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Abstract. We extend the Lagrangian proof of KAM for twist
mappings [SZ89, LM01] to show persistence of quasi-periodic equi-
librium solutions in statistical mechanics models. The interactions
in the models considered here do not need to be of finite range but
they have to decrease sufficiently with the distance.

When the interactions are range R, the models admit the dy-
namical interpretation of recurrences in (R)2R. Note that the small
perturbations in the Lagrangian are singular from the dynamical
systems point of view since they may increase the dimension of
phase space.

We show that in these models, given an approximate solution of
the equilibrium equation with one Diophantine frequency, which
is not too degenerate, there is a true solution nearby. As a conse-
quence, we deduce that quasi-periodic solutions of the equilibrium
equation with one Diophantine frequency persist under small mod-
ifications of the model.

The main result can also be used to validate numerical calcula-
tions or perturbative expansions.

We also show that Lindstedt series can be computed to all orders
in these models.

1. Introduction

It is well known that equilibrium configurations in one-dimensional
ferromagnetic models are equivalent to orbits of twist mappings. For
example, the equilibrium configurations Frenkel-Kontorova model are
equivalent to orbits of the standard map. See [MF94b] as well Sec-
tion 1.1 and the references there.

In spite of the fact the two problems (orbits of twist maps and equi-
librium states of ferromagnetic models), the intuition and the possible
natural generalizations are very different for twist mappings and for
equilibrium configurations. In this paper, we will consider some mod-
els that are very natural from the point of view of statistical mechanics
but for which there is no easy equivalent in dynamical systems.

The main result of this paper is Theorem 1, which extends the La-
grangian proof of the twist mapping theorem in [SZ89, LM01] to some
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models in statistical mechanics in which the interactions are not nearest
neighbor and indeed need not be finite range. From the point of view
of statistical mechanics, this generalization is natural. In the statistical
mechanics motivation of the Frenkel-Kontorova models they are used
to describe the deposition of a material over a substratum of a differ-
ent material. Frenkel-Kontorova models are also natural as description
of spin systems over a one-dimensional crystal. In these motivations
it is natural to consider extensions of the classical Frenkel-Kontorova
models in which all the sites interact, even if the interaction decreases
with the distance.

Adding a small interaction term for next nearest neighbor interac-
tions, even if it seems like a small perturbation from the Lagrangian pic-
ture is a very singular perturbation from the point of view of mechan-
ics. Adding a next-nearest neighbor to the Frenkel-Kontorova model
makes the phase space 4 dimensional, rather than 2 dimensional and
some of the terms are very large. We will give more details of this in
Section 1.1.4.

If one is interested in ground states which are quasi-periodic orbits
of the model, it is natural to expect that they persist under small (La-
grangian modifications of the model). This is accomplished by KAM
theory. Nevertheless, as we have pointed out, from the dynamical sys-
tems point of view, the perturbations are not small. Adding a next
nearest neighbor interaction, – no matter how small – even changes
the dimension of the phase space.

In this paper, we will show that quasi-periodic orbits persist under
perturbations of the models, provided that some non-degeneracy con-
ditions are met. In the case that the interactions are nearest neighbor,
this result is the standard twist theorem. When we consider infinite
range interactions the equilibrium configurations cannot be considered
as orbits of evolution problems, in particular, they cannot be formu-
lated as orbits of Hamiltonian systems and the proofs of KAM the-
orems based in Hamiltonian formalism do not apply. Hence, we will
use the Lagrangian formulation of the KAM theorem. Other KAM
theorems which have a Lagrangian formulation but not a Hamiltonian
one occur in [Mos88]. In contrast, there are KAM proofs in situa-
tions where there is a Hamiltonian formalism but not a Lagrangian
one [JdlLZ99, DdlL00, GEHdlL05].

When the variables at each site in the statistical model are one di-
mensional, the interaction is of range R and there are some convexity
properties in the model – which amount to ferromagnetism or twist
– the equilibrium configurations (critical points of the action) corre-
spond to orbits of “monotone recurrences” in R2R and were considered
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in [Ang90]. These mappings satisfy very remarkable dynamical prop-
erties including shadowing theorems for many orbits. In this paper, we
will show the persistence of quasi-periodic orbits with one independent
frequency under some assumptions that include ferromagnetism as a
particular case.

From the dynamical systems point of view, the fact that we get
persistence of orbits with one independent frequency is somewhat sur-
prising since one expects that the number of frequencies needed in
the KAM theorem is the same as the number of degrees of freedom
(see [Mos73]). Nevertheless, for a long time variational and topological
methods [Ang90, KdlLR97, CdlL98, dlL00] had established existence
of quasi-periodic orbits with only one frequency for models similar to
the ones we consider. In particular [CdlL98] emphasized the case of
interactions with infinite range but with a one-dimensional frequency.

The conditions of the present result are, as usual with KAM meth-
ods, more restrictive than the variational results in terms of smallness
of certain terms, regularity requirements and the such, but less re-
strictive in terms of convexity properties and on the dimension of the
variables. Of course, the KAM methods give more information than
variational methods since they conclude that the orbits lie on smooth
curves, whereas the variational methods only allow to conclude that
they lie on perfect sets or just give a description as measures (we note
that, even if it is customary to refer to the solutions produced by Aubry-
Mather theory as quasi-periodic, in the more precise nomenclature of
[SY98], they should be called “almost automorphic”’).

We have formulated the KAM result following [SZ89, Zeh76, Mos66b,
Mos66a] without reference to an integrable system. (For a comparison
of different formulations of KAM theorem, see [dlL01].) Following the
papers above, we show that, if we are given a function which satisfies
the equilibrium equation with a good enough accuracy, and which sat-
isfies some non-degeneracy condition, then, there is an exact solution
of the equilibrium equation. The distance between the approximate
solution and the exact one is bounded by the error with which the
approximate solution solves the equation. Moreover, one can conclude
some uniqueness of the solutions in a neighborhood of the approximate
one.

This is what in numerical analysis is called “a posteriori” bounds.
Since numerical or asymptotic procedures produce objects which solve
the functional equation very approximately, an “a posteriori” KAM re-
sult serves as validation of the approximate (numerical or asymptotic)
procedures, which produce objects which solve the equation up to an
small error. Note that given an a-posteriori theorem, one does not need
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to validate the algorithm to produce the solution. One just needs to
verify that the equilibrium equation is satisfied with an small error. In
the case of numerical computations, reliable upper bounds on the error
of the solution are computable (e.g. using interval arithmetic) these
type of a-posteriori theorems are the basis of computer assisted proofs.
See [Ran87, dlLR91, dlLR90, JdlLZ99, CC95, CC97] for computer as-
sisted proofs in Hamiltonian systems and [CdlL05] for computer explo-
rations in the systems considered in this paper. From the point of view
of numerical explorations it is interesting to remark that the method
presented here provides with an algorithm in which the Newton step
has a cost of only N log(N) in the number of discretization points of
the torus (this is in common with the algorithms in [SZ89, dlLGJV05]).
In contrast, most of the implementations of KAM methods use algo-
rithms of order N3 operations per step. We will present some remarks
on numerical algorithms for the quasi-periodic orbits in Section 7.1.

Relatedly, as already pointed out in [Mos66b, Mos66a, Zeh75], an
“a posteriori” result for analytic functions with good enough quantita-
tive bounds implies results for finite differentiable functions. We note
that in the papers above, the finitely differentiable results include the
assumption that the system is close to an integrable analytic one, but
we have removed this assumption here. We hope to come back to this
problem.

As a technical remark, we note that the proof of KAM theorem we
present is not based on the transformation theory that appears in many
proofs of KAM theorem, but rather is based on an iterative procedure
in which corrections are added. The method is very similar to that of
[Mos88, SZ89, LM01]. indeed, some of the identities we use will lead to
efficient numerical implementations. We refer to [CdlL05] for a deeper
discussion of numerical issues. See also Section 7.1.

Besides the KAM theory, we will also discuss some complementary
results such as study the existence of Lindstedt series and their con-
vergence.

1.1. Models considered. In Section 1.1.1, we discuss twist mappings
of the annulus which is the best known and simplest model. For twist
mappings, in the statistical mechanics language, the interactions are
nearest neighbor and the variables at each site are one dimensional.
In Section 1.1.3, we discuss statistical mechanics models of spin chains
which include the possibility of long range interactions.

The models we consider are models in which the sites are arranged in
a one-dimensional lattice Z. That is, a configuration is a mapping from
Z :→ R. From the point of view of statistical mechanics, it would have
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been natural to consider models defined in higher dimensional lattices
or even on trees. These models on higher dimensional lattices do not
admit interpretation as dynamical systems and they are not accessible
to the methods in this paper. We hope to come back to this problem.

1.1.1. Twist mappings of the annulus. It is well known in Hamiltonian
mechanics that orbits {xn}n∈Z ⊆ R of a twist map of the annulus
A ≡ T×R can be identified with critical points of the functional given
by the formal sum

(1) S({xn}) =
∑
n∈Z

S(xn, xn+1)

where S is the so-called generating function of the map.
The standard assumptions for the generating functions of the twist

mappings of the annulus are:

∂x∂yS(x, y) ≤ C < 0(2)

S(x + 1, y + 1) = S(x, y)(3)

The condition (2) is called the twist condition in dynamical systems
(it is called ferromagnetism in statistical mechanics) and (3) is implied
by the assumption that the xn can be interpreted as angles and that
the variational principle has a physical meaning, The meaning of con-
dition (3) is that, even if relative phases between two sites may be
important for the variational principle, the variational principle of the
model is unaffected by to addition of one unit to the states of all the
sites. (i.e., if {xn}n∈Z is an orbit, so is {xn + 1}n∈Z.) In some physical
interpretations, when the x are angles, it would have been reasonable
to assume S(x+1, y) = S(x, y +1) = S(x, y) which clearly implies (3).
For our purposes the assumption (3) is enough and we will not consider
stronger assumptions even if they are natural for the physical models.

We recall that {xn} is an equilibrium configuration i.e. a critical
point of (1) if and only if

(4) ∂xnS(xn, xn+1) + ∂xnS(xn−1, xn) = 0 ∀n ∈ Z

We will refer to the equations (4) as the Euler-Lagrange equations
of (1). They are obtained by computing (formally since the sum (1)
defining S is only a formal sum) ∂xnS({xn}) by noting that xn only
appears in two terms in S({xn}). Note that, even if (1) is just a formal
sum, the equilibrium equation (4) is a well defined system of equations.

For our studies, the starting point will be the equations (4) and the
relation with variational problems serves only motivation. Hence, we
will not try to make more precise the well known connection between

5



the variational principle and its critical point equations. Neverthe-
less, we recall that the Euler-Lagrange equations (4) are obtained by
imposing that truncations of the sum (1) are stationary under mod-
ifications whose support is inside the domain of the truncation. On
the other hand, we note that some of the identities that are crucial
for our approach are directly related to the variational structure of the
equilibrium equations. See Section 3.3 and the derivation of (58).

Setting

yn = ∂1S(xn, xn+1)

we have that the fact that xn satisfies (4) is equivalent to saying
{(xn, yn)}n∈Z is an orbit of the mapping T defined by

(5) (x̃, ỹ) = T (x, y) ⇔

{
y = ∂xS(x, x̃)

ỹ = −∂x̃S(x, x̃)

The reason why the equations in (5) define a map is that, because of
assumption (2), given x, y we can use the first equation to determine a
unique x̃, then, evaluate the second equation to compute ỹ.

1.1.2. Frenkel-Kontorova models. The functionals (1) also admit mo-
tivations from solid state physics. For example, the case

(6) S(x, y) =
1

2
(x− y − a)2 + V (x)

with V (x+1) = V (x) is commonly referred to as the Frenkel-Kontorova
model which describes particles deposited in a periodic substratum.
The interaction of the particles with the periodic substratum is modeled
by the term V (x) and the interaction with their nearest neighbors
(modeled by the term 1

2
(x− y − a)2).

Another possible interpretation of (6) – specifically for configurations
for which |xn − xn+1| ≤ 1 — is interactions among spin chains. In this
interpretation (2) is just that the interaction is ferromagnetic.

There is a wide variety of mathematical results for orbits of twist
maps. Among recent surveys, we mention [LC00] for a survey empha-
sizing topological results and to [MF94a, Gol01] for surveys emphasiz-
ing variational results.

1.1.3. Models from statistical mechanics with non-nearest neighbor in-
teractions. From the point of view of solid state physics it is natural to
consider models analogue to (6) for which the interaction is not near-
est neighbor. Nevertheless, it is natural to require invariance under
translations. See [Rue69].
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The invariance under translation implies that it suffices to consider
models of the form:

(7) S({xn}n∈Z) =
∑
L∈N

∑
k∈Z

HL(xk, . . . , xk+L)

Remark 1. There is a small ambiguity in the definition of the models.
For example, the model with Hi = 0, i 6= 2 and H2(x0, x1, x2) =
F (x0, x1)+F (x1, x2) is equivalent to the model with Hi 6= 0, i 6= 1 and
H1(x0, x1) = F (x0, x1).

This ambiguity will not affect any of our reasonings. We will just
state some assumptions on the interaction and draw conclusions from
them. So that the results apply for one model provided that there is
one of the equivalent interactions that satisfy the assumptions of the
results here.

As a point of notation, we observe that it is natural to label the argu-
ments of the interaction staring with zero. Hence, write HL(x0, . . . , xL).
We denote ∂iHL = ∂xi

HL. Hence, the indices of derivatives run from 0
to L.

The analogue of (3) is

(8) HL(x0, . . . , xL) = HL(x0 + 1, . . . , xL + 1)

This indicates that, even if the interactions may depend on the relative
phases at different sites, they are independent of a global change of
phase by an integer over all the sites.

The analogue of (2) that appears in the calculus of variations (e.g.
in [MF94b, CdlL98]) is:

∂i∂jHL ≤ 0 i 6= j

∂0∂1H1 ≤ C < 0
(9)

which just requires that the two body interaction is strictly ferromag-
netic while the many body interactions are not anti-ferromagnetic.

In this paper, we will require some weaker assumptions than the
assumptions (9) in the calculus of variations. As usual in KAM theory,
we will not need positivity assumptions but rather invertibility in a
neighborhood of the approximate solution. We will assume that

(10) |det(∂0∂1H1)| > C > 0

and that the longer range interactions are small. See assumption H2
in Theorem 1 for a precise formulation of the assumption.

We will require that the interactions HL decrease fast enough with
L and that the nearest neighbor interactions dominate the rest of the
interactions.
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That is, we will require that

(11)
∑
L>2

‖HL‖qL
4 < α

The precise definition of the norm used in (11) will be postponed till
Section 2.3.2. We just anticipate that the norm is an analytic norm in
a neighborhood, hence, it controls derivatives. The constant α will be
related to the properties of the nearest neighbor interaction.

1.1.4. An example. A specific model that can serve as motivation is
a Frenkel-Kontorova model with a range 2 interaction. The formal
variational principle for the model is:

S({xn}) =
1

2

∑
n

(xn+1 − xn − a)2 +
A

2
(xn+2 − xn − b)2

+
ε

4π2
(cos(2πxn)− 1)

(12)

The equilibrium equations for the Lagrangian (12) are:

(13) (xn+1 − 2xn + xn−1)+A·(xn+2 − 2xn + xn−2)+
ε

2π
sin(2πxn) = 0

The equation (13) defines a 4-dimensional map for A 6= 0. In that
case, using (13), if we are given xi−2, xi−1, xi, xi+1, there is one and only
one xi+2 so that (13) is satisfied. Hence, associated to (13), there is a
mapping that given

Xi = (xi−2, xi−1, xi, xi+1)

produces
Xi+1 = (xi−1, xi, xi+1, xi+2).

Notice that, when A = 0, the equation (13) reduces to the – two
dimensional – standard map. Hence, when A is small, (13) can be
considered as a singular perturbation of the standard map. Note that
the dimension of the phase space change. On the other hand, it seems
quite natural that, for small A, the variational principle is very similar
to the solutions of the unperturbed system.

As we will see, given the fact that our main result is an a-posteriori
result, it will follow that the solutions produced are continuous, indeed,
analytic in A.

Other generalizations of (12) which are interesting are:

S({xn}) =
1

2

∑
n

(xn+1 − xn − a)2 +
∑
j≥2

Aj

2
(xn+j − xn − bj)

2

+
µ

4π2
(cos(2πxn)− 1)

(14)
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with Aj decaying sufficiently fast. The equilibrium equations for (14)
are:
(15)

(xn+1 − 2xn + xn−1) +
∑
j≥2

Aj · (xn+j − 2xn + xn−j) +
µ

2π
sin(2πxn) = 0

Notice that if all the Aj are non-zero, the equilibrium equations are
not a finite dimensional dynamical system.

In Section 5.1 we will study the existence of Lindstedt series for
equations generalizing (15).

Remark 2. When A is small, it is natural to consider the model in
(13) as a perturbation of the case A = 0. Nevertheless, we note that,
from the point of view of dynamical systems, for A > 0 (even if it
is small), the equilibrium equations define a dynamical systems in a 4
dimensional phase space. On the other hand, for A = 0, the equilibrium
equations define a dynamical system in a two dimensional phase space.

We will present some tentative singular perturbation approach to
this problem in Section 6. The calculations in this section will also
lead to the conclusion that the systems do not admit a Hamiltonian
formulation.

Remark 3. It is interesting to notice that there is an Aubry-Mather
theory for quasi-periodic solutions of (13) provided that A > 0 (see
[CdlL98, dlL00]).

1.2. Equilibrium configurations. The equilibrium configurations of
models of the form (7) are defined as usual as the solution of Euler-
Lagrange equations which we indicate formally as

(16) ∂xi
S(x) = 0 i ∈ Z

For models of the form (7), the equations (16) are just

(17) 0 =
∑

L

∑
k+j=i

j=0,...,L
j∈Z

∂jHL(xk, . . . , xk+j, . . . , xk+L) ∀i ∈ Z

When the interactions are finite range, the sums in (17) become just
finite sums. In general, our decay assumptions (see e.g., (11) and H2
in Theorem 1) will be strong enough that the sums in (17) converge
uniformly. Hence, in contrast with the sums in (2), (7) which are merely
formal sums, the Euler-Lagrange equations (17) are well defined.

It is the equilibrium equations (17) that will be the basis of our
study. Indeed, what we will do in this paper is to study procedures
to construct solutions of equations (17). The fact that these equations
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have a variational motivation will not be used explicitly in our study
of them, even if some of the identities we will use can be traced back
to the variational structure.

In the case of finite range interactions, the assumptions (2) show
that if we are given xi−R, xi−R+1, . . . , x0, . . . , xi+R−1 there is one and
only one xi+R which satisfies the equations (17) for i = R. In other
words, given xi−R, xi−R+1, . . . , x0, . . . , xi+R−1, the equation (2) deter-
mines xi−R+1, xi−R+2, . . . , x0, . . . , xi+R, Hence, we can think of (17) for
interactions of range R as defining a dynamical system in (R)2R. Note
that, because of the invariance under translation of the interaction, the
dynamical system defined above is autonomous.

The systems thus defined, have been called “monotone recurrences”
in [Ang90] when the second derivative satisfies (2). These monotone
recurrences enjoy remarkable dynamical properties such as an Aubry-
Mather theory on existence of quasi-periodic orbits with all frequencies.
See [Ang90, CdlL98].

In this paper we will consider KAM results for models such as those
considered in Section 1.1.3. We will prove that if there is a periodic
function u such that Eω[u] defined in (21) is small enough (with respect
to other properties of the function and the rotation ω) then, there is
another function u∗ for which E[u∗] = 0. Moreover we can bound
u − u∗ in terms of the original error of the approximation. Since the
precise formulation of the result requires definitions of the norms used
to measure the error and to formulate some non-degeneracy assump-
tions, we defer the formulation of Theorem 1 till we have introduced
enough notation and definitions.

2. Statement of results

We will consider models of the form (7) but with the variables xn

being vectors in R as indicated in Section 1.1.

2.1. Plane-like configurations, hull functions. We will be inter-
ested in equilibrium configurations {xn}n∈Z ⊂ R that can be written
as:

(18) xn = h(nω)

where ω ∈ R and h : R → R satisfies

(19) h(x + e) = h(x) + e ∀e ∈ Z

Notice that because of the periodicity assumption (19) h can be
considered a map from the torus T = R/Z to itself. In our applications,
we will assume that h is a diffeomorphism of the torus.
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We will use the notation h(θ) = θ + u(θ) and often work with the u
function which is periodic.

Remark 4. In solid state physics the function h is often referred as
“hull” function of the configuration. In dynamical systems, the func-
tion h gives a semi-conjugacy between the dynamics and a rotation on
a torus. KAM theory always looks for solutions of the form (18).

An obvious consequence of the form (19) is that |xi − ωi| ≤ ‖u‖C0 .
Hence, the configurations that can be represented by hull functions are
almost linear (usually called “plane-like” in homogenization theory).
Our assumption that h is a diffeomorphism of the circle implies that
‖u‖C0 ≤ 1.

The property that a configuration is given by a hull function is equiv-
alent to the fact that it satisfies the so-called “Birkhoff property” or
“non-intersection property” or “self-conforming property”, which was
introduced in [Mat82, ALD83]. This property is very important in
variational calculus. Under hypothesis such as the maximum principle
(which is implied by (2)) all periodic minimizers satisfy the Birkhoff
property.

2.2. Equilibrium equations for hull functions. We note that the
Euler-Lagrange equations (17), that express that the configuration is in
equilibrium, evaluated on a configuration described by a hull function
h = Id +u are just

0 =
∑

L

∑
k+j=i;j=0,...,L

∂jHL

(
h(θ + kω), . . . , h(θ + (k + j)ω), . . .

, . . . , h(θ + (k + L)ω)
)

∑
L

∑
k+j=i

∂jHL

(
θ + kω + u(θ + kω), . . . , θ + (k + j)ω + u(θ + (k + j)ω), . . .

, . . . , θ + (k + L)ω + u(θ + (k + L)ω)
)

(20)
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If ω is irrational, (20) are satisfied if and only if E[u](θ) defined below
vanishes identically

Eω[u](θ] ≡
∑

L

L∑
j=0

∂jHL

(
h(θ − jω), . . . , h(θ), . . . ,

. . . h(θ + (L− j)ω)
)

≡
∑

L

L∑
j=0

∂jHL

(
θ − jω + u(θ − jω), . . . , θ + u(θ), . . . ,

. . . θ + (L− j)ω + u(θ + (L− j)ω)
)

(21)

Note that under the periodicity assumptions for HL and for u, Eω[u](θ)
is a periodic function of θ.

When ω is understood – in most of this paper we will be considering ω
a fixed Diophantine number – we will suppress the ω from the notation.

Remark 5. We also remark that E[u](θ) is the Euler-Lagrange equation
associated to the functional Pω defined on periodic functions by

(22) P [u] =

∫ 1

0

∑
L

1

L
HL

(
θ + u(θ), . . . , θ + Lω + u(θ + Lω)

)
This is an extension of the functional introduced in [Per74, Per79]

for computational purposes in the case of nearest neighbor interactions.
This functional was used in [Mat82] to establish existence of quasi-
periodic solutions which were given by monotone – but possibly non-
smooth – hull functions h.

2.2.1. A symmetry of the equilibrium equations. As motivation, we will
start by examining some consequence of the invariance under transla-
tion.

Note that if h(θ) = θ + u(θ) is the hull function for a configuration
x, then for k, ` ∈ Z

(23) h̃(θ) = θ + kω + u(θ + kω) + `

is the hull function for the configuration obtained shifting the argu-
ment in x by k and adding an integer to it. Since the interaction is
invariant under translation (see (7)) and by addition of integers to a
configuration (see (8)), it is clear that if the configuration xn = h(nω)

is an equilibrium, the configuration whose hull function is h̃ given in
(23) is also an equilibrium. If ω is irrational, then, kω is dense in
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the torus. Therefore, if u is a continuous solution of the equilibrium
equation (20), so is

(24) uσ = u(θ + σ) + σ

for any choice of σ ∈ T.
The fact that (24) is a solution of (20) for all σ can be also checked

by substituting directly. It is valid for all ω, including rational ones.
In summary, in general, the quasi-periodic solution of the equilibrium

equations are not unique and indeed appear in one parameter families.
This corresponds to the choice of the origin of time in the of the torus
parameterization, which is a symmetry of the problem. The diffeomor-
phism of the torus hσ corresponding to uσ is just the translation of the
origin in h. That is h(θ + σ) = hσ(θ).

The fact that the solutions come in families will play an important
role in the study of the equations of equilibrium. Using (24), we see
that given one u, we can find a unique σ such that ũσ has zero average.

An important consequence of the symmetry of the problem under
translation and changes of phases is the identity:

(25) E[uσ](θ) = E[u](θ + σ).

This identity will play an important role in in Section 3.3.
Actually, the symmetry under changes of the origin of the phases is

true not only for the equilibrium equations but also for the variational
principle (22). We have

(26) P [uσ] = P [u].

This identity will also play a role in Section 3.3.
Given the importance of the symmetry under shifts in the formulas,

it is important for the analysis that the norms we use are also invariant
under shifts. The norms we introduce in Section 2.3.1, are indeed in-
variant under shifts in the parameterization. The non-degeneracy con-
ditions we will consider in Theorem 1 are also invariant under changes
of the origin of the phase. Hence, we can assume without loss of gen-
erality that the approximate solutions we consider are such that the
average of E[u] is zero.

2.3. Formulation of the main result. The main result Theorem 1
below will be of the form that if there is a function which makes E[u]
small, and which satisfies non-degeneracy conditions, then close to it,
we can find an exact solution close to the approximate one. This solu-
tion is unique – up to obvious symmetries — in a small neighborhood
of the approximate solution we started with.
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This formulation of KAM theorems, as a-posteriori results with-
out reference to integrable systems have been common since [Mos66b,
Mos66a]. See [dlL01] for a historical review.

In order to formulate that periodic functions are small, we will intro-
duce appropriate norms in Section 2.3.1 and study some of the elemen-
tary properties. In Section 2.3.2, we will describe norms on interactions.

2.3.1. Some families of norms in analytic periodic functions. We will
denote by

Tρ =
{
z ∈ C/Z | | Im z| ≤ ρ

}
We denote byAρ the Banach space of functions from Tρ taking values

in CL (when L is understood from the context we will omit it from the
notation) such that

• They are real for a real argument.
• They are holomorphic in the interior of Tρ and continuous on

Tρ.

We consider Aρ endowed with the norm

(27) ‖u‖ρ = sup
z∈Td,ρ

|u(z)|.

This norm makes Aρ a Banach space.
Since the set of L that we will consider will be unbounded, it is

important to specify that the norm we will use in CL is the supremum
of the coordinates. Of course, for finite L all the norms in CL are
equivalent, but the constants given the equivalence could be unbounded
as L grows, so that one needs to pay attention to the choice of norms.
We have not optimized the choice of norms in CL. So that it is quite
possible that other choices could lead to sharper results. This will also
become important when we choose norms in the space of interactions
in Section 2.3.2.

It is clear that if ⊗ is a bilinear operation of norm 1 (e.g an in-
ner product, multiplication or matrices with their operator norms), we
have:

(28) ‖u⊗ v‖ρ ≤ ‖u‖ρ · ‖v‖ρ

We also recall that we have Cauchy estimates for derivatives and for
the Fourier coefficients in terms of the family of norms (27). We will
write the Fourier series of a function u ∈ Aρ as

u(θ) =
∑
k∈Z

uk e2πikθ

14



Proposition 1. Let u ∈ Aρ,L, with ρ > 0, L ∈ N, then Dj
θu ∈ Aρ′,L

for every 0 < ρ′ < ρ. Moreover,

‖Dj
θu‖ρ′ ≤ C (ρ− ρ′)−j‖u‖ρ

|uk| ≤ e−2πρ|k|‖u‖ρ

The proof of this proposition can be found in any book in complex
analysis. In Section 2.3.2 we will present in detail similar standard
proofs in other more complicated cases to make sure that we obtain
the dependence in L.

The following lemma estimates the composition of functions and
shows it is differentiable.

Lemma 1. Let u ∈ Aρ,L. Let U ⊂ CL be such that

dist(CL − U, u(Tρ)) ≥ δ > 0.

Let f : U → C be an analytic function ‖f(z)‖L∞(U) ≤ M . Let
η ∈ Aρ,L.

Then, we have:

a) If ||η − u||ρ < δ, then f ◦ η ∈ Aρ. Moreover,

|f ◦ η|ρ ≤ M.

b) If ||u− η||ρ ≤ δ/2.

Then, the mapping f̃ : Aρ → Aρ defined by f̃ [γ] = f◦(η+γ) is
an analytic mapping from the set ‖γ‖ρ < δ/2 to Aρ. Moreover,
we have the following explicit formula for the derivative of the
operator Df̃ and bounds for the reminder”

c)

(29) (Df̃)[η]γ = f ′ ◦ η · γ

If ‖ϕ‖ρ < δ/2,

‖f̃ [η + ϕ]− f̃ [η]−Df̃ [η]ϕ‖ρ

≤ 2Mδ−2‖ϕ‖2
ρ‖f ◦ (η + ϕ)− f ◦ η‖ρ

≤ 2M‖ϕ‖ρ

(30)

The proof of Lemma 1 is an straightforward and standard application
of the Taylor theorem with uniform estimates and the Cauchy estimates
for the derivatives. We leave it for the reader.

Remark 6. We emphasize that the Df̃ in (30) refers to the derivative

of the operator f̃ acting on a space of functions.
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It is interesting to compare this with the derivative with respect to
the variable θ of the function f̃ [η](θ) = f ◦ η(θ). We have d

dθ
f [η](θ) =

f ′ ◦ η(θ).

Even if Df̃ and d
dθ

f [η](θ) are conceptualy very different, they have
the same formula. This will play an inportant role later leading to
interesting cancellations.

2.3.2. Regularity properties of the interactions. We will assume that
the interactions HL are defined on a complex set and analytic there.
We will need that the functions HL are analytic in a complex domain
large enough to allow their evaluation on the interactions we are con-
sidering. The goal of this section is to define norms in the interactions
that measure their sizes so that we can state precisely the results. For
the spaces that we will consider, it will be quite important to con-
sider not only the sizes but also the domains. Even if we will not
consider this in this paper, we hope that this will allow to extend
the results to finite differentiable interactions using the techniques of
[Mos66b, Mos66a, Zeh75] which characterize finite differentiable func-
tions by their approximation properties. Thinking about this further
extension, the result we will present will pay special attention to the
dependence of the smallness conditions and the change required in the
conclusions with respect to the domain of the function.

In the applications to physical problems, the assumption that the
interactions are analytic in a large domain will be often satisfied.

Since our result will be formulated for an approximate solution, it
is natural to consider domains for the interaction which are defined in
the a neighborhood of the range of of a configuration.

Given u ∈ Aρ, we consider

DL,u,δ =
{

(z0, . . . , zL) ⊂ (C)L+1
∣∣∣

∃ θ ∈ Td,ρ, |zi − h(θ + iω)| ≤ δ, i = 0, . . . , L
}(31)

As usual, we suppress the dependence in ω from the notation unless it
can cause confusion.

Again, we recall that the norms we use in CL are the supremum
norms.

Since our configurations will be such that they map real values into
real values, in some applications it suffices to consider the simpler do-
mains

(32) D̃L,δ =
{

(z0, . . . , zL) ⊂ (C)L+1
∣∣∣ | Im(zi)| ≤ δ

}
16



Clearly,

(33) DL,u,δ ⊂ D̃L,‖u‖ρ+δ.

Since L will be unbounded, we will need to estimate the dependence
in L of several standard results such as Cauchy estimates and the like.
The proofs we present are not optimized very seriously.

With the choice of supremum norm in CL+1, we have

sup
θ∈Tρ

|
(
u(θ), u(θ+ω), . . . , u(θ + Lω)

)
− (ũ(θ), ũ(θ + ω), . . . , ũ(θ + Lω)|

≤ ||u− ũ||ρ

(34)

Therefore, we have

HL((u(θ), u(θ+ω), . . . , u(θ + Lω))

−HL(ũ(θ), ũ(θ + ω), . . . , ũ(θ + Lω)|
≤ ||DHL||L∞||u− ũ||ρ

(35)

On the other hand, we note that the estimate of the norm of a
derivative in terms of the partial derivatives does have a dependence
on L.

|DHL| ≤ (L + 1) max
j=0,...L

|∂xj
HL|

The Cauchy bounds may also have a dependence in L. In Lemma 2,
we state the version of Cauchy estimates which we will use (even if we
do not know if it is optimal).

Lemma 2. If Ω ⊂ Ω̃ and dist(Ω, CL+1 − Ω̃) ≥ δ we have:

(36) ||DHL||Ω ≤ C(L + 1)δ−1||HL||Ω̃
Proof. Given z ∈ Ω we can find circles γi centered in zi with radius δ
such that γ = (γ0, . . . , γL) ⊂ Ω.

Cauchy formula gives:

HL(z) =
1

(2πi)L+1

∫
γ0

dw0 · · ·
∫

γL

dwL
HL(w)

(w0 − z0) · · · · (wL − zL)

Therefore, given a direction η, DηHL, the directional derivative is:

DηHL(z)

=
1

(2πi)L+1

∫
γ0

dw0 · · ·
∫

γL

dwLHL(w)
[ η0

(w0 − z0)2 · (w1 − z1) · · · · (wL − zL)
+ · · ·

ηL

(w0 − z0) · (w1 − z1) · · · · (wL − zL)2

]

(37)
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Using that ∫
γi

dwi
1

|wi − zi|
≤ 2π∫

γi

dwi
1

|wi − zi|2
≤ 2πδ−1

we obtain the claimed result. �

Corresponding to the domains DL,u,δ, D̃(L, δ) we consider the spaces
HL,u,δ, HL,δ consisting of functions analytic in the interior and contin-
uous in the whole domain. We endow these spaces with the supremum
norm, which makes them Banach spaces.

‖HL‖L,u,δ = sup
z∈DL,u,δ

|HL(z)|

‖HL‖L,δ = sup
z∈D̃L,δ

|HL(z)|(38)

By (33), we have HL,u,δ ⊂ HL,‖u‖ρ+δ and ‖HL‖L,u,δ ≤ ‖HL‖L,‖u‖ρ+δ.

2.3.3. Statement of the main result of the paper. Following standard
practice in KAM theory, we will denote by C numbers that depend
only on on combinatorial factors but are independent of the size of the
domains considered, the Diophantine constants κ or the size of the error
assumed. In our case, we will also require that they are independent
of L, the range of the interactions. The meaning of this constants can
change from one formula to the next.

The main result of this paper is

Theorem 1. Let H be a translation invariant interaction as in (7)
satisfying the periodicity condition (8).

Let ω ∈ R. Let h = Id +u, with u ∈ Aρ,
∫

T u = 0 be an analytic
diffeomorphism of T.

Assume:

H1) ω is Diophantine, i.e., for some κ > 0, τ > 0

(39) |pω − q| ≥ κ|q|−τ ∀p ∈ Z− {0}, q ∈ Z.

H2) The interactions HL ∈ HL,u,δ for some δ > 0.
Denote

ML = max(‖DiHL‖L,u,δ), i = 0, 1, 2, 3

α = C
∑
L≥2

MLL4
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where C is a combinatorial constant that will be made explicit
during the proof.

H3) Assume that the inverses indicated below exist and have the in-
dicated bounds.

H3.1)

‖(∂0∂1H1)
−1(u(θ), u(θ + ω))‖ρ ≤ T.

H3.2) Define

C0,1,1(θ) = ∂0∂1H1(u(θ), u(θ + ω))h′(θ)h′(θ + ω)

(See (56) later for a justification of including the subindices
in C)
Assume that: (∫

T
C−1

0,1,1

)−1

≤ U.

H4) The following bounds measure the non-degeneracy and the accuracy
with which the approximate solution solves the problem.

H4.a) ‖ Id +u′‖ρ ≤ N+, ‖(Id +u′)−1‖ρ ≤ N−.
H4.b) ‖E[u]‖ρ ≤ ε.

Assume furthermore that the above upper bounds satisfy the following
relations:

H4.i) Tα < 1/2, UTα < 1/4
H4.ii) ‖u‖ρ + ρ ≤ 1

2
δ

H4.iii) ε ≤ ε∗(N+, N−, τ, α, T, U, δ)κ4ρ4τ+A

where ε∗ is a strictly positive function which we will make explicit along
the proof. The function ε∗ makes quantitative the relation between the
smallness conditions and the nondegeneracy conditions. A ∈ R+ is a
number which will also be made explicit along the proof.

Then, there exists a periodic function u∗ ∈ Aρ/2 such that

(40) Ẽω[u∗] = 0

and
∫

u∗ = 0.
Moreover

(41) ‖u− u∗‖ρ/2 ≤ Cκ−2ρ−2τ−AT‖E[u]‖ρ

The function u∗ is the only function in a ball of radius centered at u
of radius Cκ−2ρ−2τ−AT‖E[u]‖ρ satisfying (40) and the normalization.∫

u∗ = 0.

The most important hypothesis of Theorem 1 is H4.iii) which re-
quires that the test function satisfies the equilibrium equation with an
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error with is sufficiently small with respect to the other quantities that
measure the degeneracy of the problem.

The hypothesis H3.1 is the twist condition for the nearest neighbor
interaction. The condition H3.2 defines some quantity related to the
twist. The quantity in H3.2 appears in H4.i. The importance of H4.i
will come from the fact that it will allow us to show that the non-
degeneracy condition in the nearest neighbor interaction allows us to
control the non-degeneracy of all the other interactions.

Note also that the dependence of the smallness conditions on the
domain of analyticity ρ is a power and also that the effect of the an-
alyticity domain in the correction (41) is also a power of ρ. It is well
known to experts that such a result can be used to prove a finitely
differentiable result. We hope to come back to this problem.

We also note that such a result implies that there is Lipschitz de-
pendence on the Diophantine frequencies. (Just take the solution for a
frequency as an approximate solution for a nearby frequency). Indeed,
by combining a result such as the one above with the Lindstedt series,
one gets that the dependence on the frequencies is smooth in the sense
of Whitney. See [Van02, dlLV00].

Theorem 1 implies the result of persistence of solutions for quasi-
integrable systems. In our case, the integrable systems are the linear
systems:

(42) H0
L(x0, . . . , xL) = AL

1

2
|x0 − xL|2.

For systems of the form (42), given ω ∈ R, xn = ωn is a solution, which
corresponds to u = 0. If we consider a system HL = H0

L + µFL. If the
perturbation satisfies ‖F‖L,δL

2 < ∞, for |µ| sufficiently small, we can
consider u = 0 as an approximate solution of the system.

Note that, to verify the hypothesis of Theorem 1, ε – the error –
is bounded by µ and the non-degeneracy conditions remain uniformly
bounded as µ approaches zero. Hence, we can obtain the existence of
solutions with corresponding frequencies. A more detailed discussion
of results for quasi-integrable systems happens in Section 5.1.

3. Description of the proof of Theorem 1

The proof is based on an iterative procedure very similar to that of
[Mos88, SZ89, LM01]. Given a function u so that ‖E[u]‖ρ is sufficiently
small compared with other properties of the function, the iterative
procedure constructs another function ũ defined in a smaller domain
and such that

(43) ‖E[ũ]‖ρ′ ≤ CTA(τ,N+, N−, T, U)κ−2(ρ− ρ′)−2τ−1(‖E[u]‖ρ)
2
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where A is a very easy algebraic function.
As it is well known in KAM theory, the estimates (43) imply that

the iterative procedure can be repeated indefinitely and the resulting
sequence converges to a function satisfying all the claims of Theorem 1.
We will present details later.

The procedure to produce the improved solution we will use here is
very similar to that of the papers [SZ89, Mos88, LM01]. Nevertheless,
we have to deal with the fact that the interactions are not nearest neigh-
bor. The method of the previous papers depended on some identities
[Koz83, Mos88] obtained by combining derivatives of the approximate
solution, and using the variational structure and the symmetry of the
problem. These identities allow us to reduce the problem to a constant
coefficients problem. As it turns out, similar identities hold in our case.
and we can obtain a similar factorization. Once this factorization is
obtained, we can deal treat the non-nearest neighbor interactions per-
turbatively.

3.1. Heuristic description of the iterative step. The iterative step
is very similar to the iterative step in the previous papers [Mos88],
[SZ89], [LM01]. The step is based on a modification of the New-
ton method which makes the linearized equation used in the Newton
method readily solvable but does not change the quadratic convergence.
See (53).

In this section we will describe the iterative procedure somewhat
formally. We will specify the manipulations to be carried out with the
functions but ignore questions of domains, definition and convergence of
series involved. These questions will be addressed in Section 4 where we
will develop estimates for the objects considered. These estimates will
allow us to verify that the algorithm can indeed be well defined and that
the steps indicated formally can be carried out (i.e. the compositions
can be defined since the domains match). The estimates will also verify
that the step improves the solution in the sense that they satisfy (43).

Undoubtedly some experts will be able to carry out the detailed
estimates in Section 4 without reading it. In this presentation, we have
followed the notation of [Mos88, SZ89, LM01] as much as possible.

In Sections 3.2, 3.3, 3.4 3.5 we will motivate and specify an iterative
procedure that given a sufficiently approximate solution produces a bet-
ter one. This procedure will be rigorously analyzed in the subsequent
sections. In Section 4 we will present estimates that make precise the
fact that the iterative procedure improves the approximation (albeit
in a smaller domain). In Section 4.3 we will show that the procedure
can be iterated indefinitely, and that converges to a solution. Given
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the estimates in Section 4, the estimates in Section 4.3 are very similar
to those in [Zeh76]. In Section 4.4 we will show that the solution is
unique in a ball.

3.2. A Newton step. The iterative procedure we will use will be a
modification of the Newton procedure. The important thing for us that
it leads to estimates as in (43). The step will be similar to the step
in [LM01] – except in the perturbative treatment of the non-nearest
neighbor interactions –. We have tried to follow the notation of [LM01]
as much as possible.

As motivation, and to introduce the notation, we will start by dis-
cussing the standard Newton method. Given that we have an approx-
imate solution u, a step of the Newton method consists in setting

û = u + v

where v is obtained by solving

(44) E ′[u]v = −E[u]

where E ′ denotes the derivative of the functional E with respect to its
argument.

Proceeding formally for the moment, (we will present precise es-
timates in Section 4) we compute (the computation can readily be
justified using Lemma 1) that:

(E ′[u]v)(θ) =

=
∑

L

L∑
j=0

L∑
i=0

∂j∂iHL(θ − jω + u(θ − jω), . . . , θ + u(θ),

. . . θ + (L− j)ω, u(θ + (L− j)ω))v(θ + (i− j)ω)

(45)

We introduce the notation

h(θ) = θ + u(θ)

h(i)(θ) = θ + iω + u(θ + iω)

γL(θ) = (h(θ), h(1)(θ), . . . , h(L)(θ))

γ
(i)
L (θ) = (h(i)(θ), h(1+i)(θ), . . . , h(L+i)(θ))

(46)

In particular, h(0)(θ) = h(θ), γL(θ) = γ
(0)
L (θ).

Using the notation above, (45) can be written more concisely as

(47) (E ′[u]v)(θ) =
∑

L

L∑
j=0

L∑
i=0

∂j∂iHL(γ
(j)
L (θ))v(i−j)(θ)
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3.3. Two important geometric identities. An identity for the op-
erator E ′[u] introduced in (45) which will be extremely important later
is

(48)
d

dθ
E[u](θ) = (E ′[u]h′)(θ)

The identity (48) can be verified by a direct calculation, taking
derivatives with respect to θ in (21) and comparing with E ′[u]h′ in
(45).

More conceptually, we note that the identity (48) is just the deriv-
ative with respect to σ of the equation (25) E[ũσ](θ) = E[u](θ + σ)
evaluated at σ = 0. We recall that the equation (25) expressed the
invariance of the problem under changes of the origin of the internal
phase.

If we take derivatives with respect to σ in (25) and evaluate for σ = 0,
taking into account that

d

dσ
uσ

∣∣
σ=0

= Id +u′ = h′

we obtain (48).

Remark 7. It has been remarked in [BGK99] that the introduction of
the correction term E ′[u]h′ is similar to the use of Ward identities in
quantum field theory.

Recall that the gist of Ward identities is that taking derivatives of
solutions with respect to a symmetry of the theory, we obtain an iden-
tity that can be used to absolve terms in the perturbation theory or in
the renormalization group. In our case, the symmetry of the theory is
the covariance under the choice of the origin of the phase expressed by
(25).

Another interpretation from the point of view of differential equa-
tions can be found in [Koz83, Mos88].

There other possible identities obtained through similar ideas. For
example, [Zeh76] points out that other useful identities in the Hamil-
tonian formalism are related to the invariance of the equations un-
der canonical changes of variables (The group structure). Of course,
since our equations (or the partial differential equations of [Mos88]) do
not admit a transformation theory, the two phenomena seem different.
Nevertheless, the method of proof in [SZ89] uses symmetries of the
equation – for flows – that allow one to reduce the Newton method to
the case of the identity. I am very indebted to A. González-Enriquez
who explained me many of these symmetries.

Another identity that will play an important role is:
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Lemma 3. With the notations above we have

(49)

∫
T
h′(θ)E[u](θ) dθ = 0.

Proof. By changing variables in each term of the sum below, we obtain:

L∑
j=0

∫
T
dθ h′(θ)∂jHL(h(−j)(θ) . . . h(L−j(θ))

=
L∑

j=0

∫
T
dθ ∂jHL(h(θ) . . . hL(θ))h′(j(θ)

=

∫
T
dθ

d

dθ
HL(h(θ) . . . hL(θ))

= 0

where we have used the periodicity properties of h (19) and the peri-
odicity properties of HL (3).

Recalling the expression of E[u] given in (21), the desired result is
obtained adding the previous calculation over L. �

More conceptually, we note that the equation (49) is related to the
variational structure and the invariance under translation of the prob-
lem. We recall that, as mentioned before, the equilibrium configura-
tions are critical points of the functional P introduced in (22). The
variational principle (22) is invariant under changes of the origins of
the phase and in (24) we had s P [uσ] = P [u]. A simple calculation
shows that:

d

dσ
P [uσ]

∣∣
σ=0

=

∫
h′(θ)E[u](θ) dθ

and therefore, (49) is a consequence of the invariance under translation
of the variational principle.

3.4. The quasi-Newton method. Unfortunately, the equation (44)
is hard to solve in our case since it involves difference equations with
non-constant coefficients.

The trick that works in our case is very similar to the one that was
used in [Koz83, Mos88, SZ89] and specially in [LM01]. Namely, our
step consists in solving the following equation, which is a modification
of (44), the equation suggested by the Newton method.

(50) h′(θ)(E ′[u]v)(θ)− v(θ)(E ′[u]h′)(θ) = −h′(θ)E(θ)

The equation (50) is just (44) multiplied by the d× d matrix h′ and
added the extra term v(E ′[u]h′).
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We will show that indeed, the equation (50) can be solved by reducing
it to constant coefficient equations plus an elementary perturbative
argument. We will also show that the iterative step, leads to quadratic
estimates of the form (43). The reason why the added extra term is
small is that, because of (48) we can write

(51) v(θ)(E ′[u]h′)(θ) = v(θ)
d

dθ
E[u](θ)

So that, when we show in Section 4 that ‖v‖ρ′ is estimated by ‖E‖ρ

we will have that the extra term is controlled by ‖E‖2
ρ. The role of

the added extra term will be to make the RHS of equation (50) be
factorizable. This same phenomenon happened in [Mos88, SZ89].

3.5. Solution of the equation of the quasi-Newton method. The
goal of this section is to specify the steps of an algorithm that can be
used to solve the equation (50). Once we have specified how to break
down (50) into auxiliary problems, we will present estimates for them
in Section 4.

Following the previously mentioned references, we introduce a new
variable w by

(52) v(θ) = h′(θ)w(θ)

Notice that the nondegeneracy assumption H4.a of Theorem 1 implies
that h′ is boundedly invertible, so that, the unknowns v and w are
equivalent.

Substituting (52) by (47) into (50) and using the notation in (46),
we obtain that the equation to be solved for the step of the modified
Newton method is:∑

L

L∑
j=0

L∑
i=0

∂j∂iHL ◦ γ
(−j)
L (θ)h′(θ)h′(i−j)(θ)w(i−j)(θ)

−
∑

L

L∑
j=0

L∑
i=0

∂j∂iHL ◦ γ
(−j)
L (θ)h′(i−j)(θ)w(θ)h′(θ)

= −h′(θ)E[u](θ)

(53)

We will analyze separately the terms that appear in the RHS of (53).
We first fix L and then, we consider the terms that correspond to a
certain i, j. Our goal is to show that the equations can be factored into
simpler equations.

We first note that, when i = j, the terms in the RHS of (53) cancel.
The two terms in the first sum cancel the two terms in the second sum.
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When i 6= j we observe that we have four terms involving the mixed

derivatives ∂j∂iHL ◦ γ
(j)
L , namely,

∂j∂iHL ◦ γ
(−j)
L (θ)h′(θ)h′(i−j)(θ)w(i−j)(θ)

+∂i∂jHL ◦ γ
(−i)
L (θ)h′(θ)h′(j−i)(θ)w(j−i)(θ)

−∂j∂iHL ◦ γ
(−j)
L (θ)h′(i−j)(θ)h′(θ)w(θ)

−∂i∂jHL ◦ γ
(−i)
L (θ)h′(j−i)(θ)h′(θ)w(θ)

(54)

We rearrange (54) as

∂j∂iHL ◦ γ
(−j)
L (θ)h′(θ)h′(i−j)(θ)[w(i−j)(θ)− w(θ)]

−∂i∂jHL ◦ γ
(−i)
L h′(θ)h′(j−i)(θ)[w(θ)− w(j−i)(θ)]

(55)

An observation that is important for us is that the second term in
(55) is just the first term shifted (j − i)ω.

We introduce the notation

[∆`w](θ) ≡ w(θ + `ω)− w(θ)

≡ w(`)(θ)− w(θ)

Ci,j,L ≡ ∂j∂iHL ◦ γ−j
L (θ) h′(θ)h′(i−j)(θ)

(56)

With the notations (56) above, the four terms in (55) corresponding
to a fixed i, j, i 6= j can be written:

(57) ∆j−i[Ci,j,L(∆i−jw)]

Therefore, the equation (53) can be written as:

(58)
∑

L

L∑
j,i=0
j>i

∆j−iCi−j,L∆i−jw = h′E[u]

Remark 8. As a curiosity, we note that some of the identities between
the terms in (54) can be considered physically as a consequence of the
action-reaction principle. Note that the interpretation of each of the
terms is that of the force on one body from another. They are clearly
related to the fact that the equations come from a variational principle.
The other identities used come from the invariance under shifting of
the origin of the internal phase, which in turn is a consequence of the
invariance under translations of the model and the invariance under
global changes of the phase by an integer.

The basic idea we will use is that, under the hypothesis i) of Theo-
rem 1, the equation (58) can be treated as a perturbation of the term
corresponding to L = 1 corresponding to nearest neighbor interactions.
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To accomplish this perturbative treatment, it will be important to
study conditions for invertibility of the operators ∆`. A precise formu-
lation of this study will be carried out in Section 4.1. For the moment,
we will just perform formal manipulations to motivate and specify the
procedure to be followed in Procedure 1. Later we will provide es-
timates that show that the procedure can be implemented and give
bounds on the results.

The first observation is that the operator ∆1 is diagonal on Fourier
series. Hence, if we consider the equation for w given η

(59) ∆`w = η

when η =
∑

ηke
2πikθ, provided that η0 = 0, we can find (at least

formal) solutions of (59) by setting, for k 6= 0:

(60) wk = ηk/(e
2πi`k·ω − 1)

(recall that we are assuming that ω is Diophantine, hence, in particular,
`kω ∈ Z =⇒ k = 0) These solutions η are unique up additive
constants.

We will denote by ∆−1
1 the operator that given η produces the w

with zero average. This makes into a linear operator.
These operators appear very often in KAM theory and have been ex-

tensively studied. In Section 4.1 we state the results of [Rüs75, Rüs76],
which are optimal with respect to the loss of differentiability.

Hence, we can define the operators

L±` = ∆−1
±1∆`

acting on all the functions in Aρ and the operators

R±
` = ∆`∆

−1
±1

defined for all functions with zero average.
Note that all the operators L±` and R±

` have as range the set of
functions with zero average.

Remark 9. The operators R±
` L±` are not identical since R±

` can only
be defined on functions with integral zero. When applied to functions
with integral zero, the operators R,L agree. In other words, the only
difference among them is that R±

` have a domain which is a codimen-
sion 1 space while the domain of L±` is the whole space.

The key observation that allows to treat the equation (53) as a per-
turbation of the nearest neighbor case is the fact that, in spite of the
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fact that ∆−1
±1 are unbounded operators, we have:

‖∆−1
±1∆`‖ρ ≤ |`|

‖∆`∆
−1
±1‖ρ ≤ |`|.

(61)

The (elementary) proof of this key result is postponed till Lemma 6.
Coming back to the solution of the equation (53), we observe that

separating explicitly the nearest neighbor terms, we have that (58) can
be written as

−h′E[u] = ∆−1C0,1,1∆1w +
∑
L≥2

∑
i>j

∆i−jCij,L∆j−iw

= ∆−1

[
C0,1,1 +

∑
L≥2

∑
i>j

∆−1
−1∆i−jCi,j,L∆j−i∆

−1
1

]
∆1w

(62)

By the twist assumption property H3, the operator C0,1,1 is bound-
edly invertible from the spaces Aρ′ (with zero integral) to itself.

Similarly, we observe that the operator G is defined on the functions
Aρ′′ with zero average. This is acceptable for our applications because
the operator G in (62) is only applied to ∆1w, which has zero average.
We also note that the operator G always produces functions with zero
average. All the terms in the sum defining G in (63) have in the left
an operator L−i−j which produces functions with zero average.

The decay properties on the interaction which we assumed in Theo-
rem 1 show that

(63) G ≡
∑
L≥2

∑
i>j

∆−1
−1∆i−jCi,j,L∆j−i∆

−1
1

has a small norm from Aρ′′ to Aρ′′ for all 0 < ρ′′ ≤ ρ.
Indeed we have using the estimates assumed in Theorem 1 and the

bounds for ||∆−1
−1∆i−j||ρ′′ ||∆j−i∆

−1
1 ||ρ′′ obtained in Lemma 6

‖G‖ρ′′ ≤
∑
L≥2

ML

∑
0≤i≤j≤L

|i− j|2

≤ C
∑
L≥2

MLL4

= α

(64)

Hence, under the assumptions i) of Theorem 1, the usual Neumann
series shows that the operator C0,1,1 + G is boundedly invertible from
Aρ′ to Aρ′ . Moreover, we have

‖(C0,1,1 + G)−1 − (C0,1,1)
−1‖ρ′ ≤ 1/(1− Tα)‖(C0,1,1)

−1G‖ρ′

≤ 2Tα
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The equation for T ∈ R can be written as:(∫
T
C−1

0,1,1

)
T +

∫
T

[
(C0,1,1 + G)−1 − (C0,1,1)

−1
]
T =

∫
T
(C0,1,1 + G)−1ϕ

Under the assumptions i), we see that the second term in the left hand
side of the above equation can be treated as a perturbation of the first
term. Therefore,

|T | ≤ U/(1− 2UTα)‖ϕ‖ρ′

≤ 2U‖ϕ‖ρ′

Then, w can be obtained by solving the equation ∆−1
−1w = ϕ + T .

and, we obtain v by
In summary, the procedure to solve (62) is to follow the following

steps

Procedure 1. (1) Observe that, by Lemma 3, we have
∫

T h′E[u] =
0.

(2) Find a function ϕ (normalized so that
∫

ϕ = 0) solving the
equation

(65) ∆−1ϕ = −h′E[u]

Therefore, for any constant T

∆1(ϕ + T ) = −h′E[u]

The equation (65) is the standard small divisors equation,
which has been studied in e.g. [Rüs75].

(3) Choose T in such a way that

(66)

∫
(C0,1,1 + G)−1(ϕ + T ) = 0.

To accomplish that, we will show that, under the non-degeneracy
assumptions, the linear operator on T defined by the LHS of
(66) is is invertible. This follows from assumption H3) because
the operator G is invertible.

We emphasize that T ∈ R and that this step is dividing by a
number, which is trivial if the number is non-zero.

(4) Obtain w by solving

∆1w = (C0,1,1 + G)−1(ϕ + T )

(5) We set

ũ(θ) = u(θ) + h′(θ)w(θ)

as our improved solution
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Remark 10. We note that the analysis above also allows to conclude
uniqueness of the solution of the equation (50). Note that the factor-
ization of the equation into steps is just an identity. Each of the steps
provides with unique solutions. As we will see, uniqueness of the so-
lution of this linearized problem will translate into uniqueness of the
solution of the full non-linear problem. In turn, this will be useful for
the study of problems with finite regularity.

4. Estimates for the iterative step

The goal of this section is to provide precise estimates for the iterative
step described in Section 3.1.

The precise statement of the result of this section is the following
Lemma 4. This lemma establishes that the procedure indicated in Sec-
tion 3.1 can be carried out if there are some smallness assumptions
(that guarantee that compositions can be defined). The most crucial
results is the estimates (70) that establish that the error after the pro-
cedure is quadratically small with respect to the original error.

Finally, since the final estimates of the step depend on the con-
stants that measure the non-degeneracy properties of the solution, we
estimate how these non-degeneracy properties change. This will be im-
portant to show that the procedure can be iterated indefinitely using
(69). This is very standard in KAM theory.

Remark 11. For further applications (e.g. Section 5.3) it is important
to remark that the size of the change of u produced in the iterative
step depends only on the size of the non-degeneracy conditions. In
particular, if we have families of problems and families of approximate
solutions so that they satisfy the hypothesis of the step uniformly, then,
we can carry the step for all of them and then, the result has uniform
estimates.

Lemma 4. Under the assumptions of Theorem 1. Let 0 < ρ′ < ρ.
Assume that

κ−2(ρ− ρ′)−2τ (N+)2‖E[u]‖ρ ≤ δ/4.(67)

Then, the procedure indicated above can be carried out to produce a
solution v ∈ Aρ′ of (50) satisfying

∫
v = 0.

We have the following estimates:

‖w‖ρ′′ ≤ Cκ−1σ−τ‖ϕ‖ρ′′

≤ Cκ−2σ−2τN+ε
(68)

30



Denote by ũ = u + v,h̃ = Id +h̃ to be the improved approximate
solutions obtained applying the procedure, we have:

‖ũ− u‖ρ′ ≤ Cκ−2(ρ− ρ′)−2τ (N+)2‖E[u]‖ρ

‖h̃′ − h′‖ρ′ ≤ Cκ−2(ρ− ρ′)−2τ−1(N+)2‖E[u]‖ρ

(69)

We also have have that E[ũ] is well defined and, moreover, the solu-
tion solves the problem more accurately in the sense that:

‖E[ũ]‖ρ′ ≤ C

[
(N+)2N− + N4

+

∑
L

MLL

]
·

· κ−4(ρ− ρ′)−4τ−1
(
E[u]ρ

)2(70)

As a consequence of (69), we have the following estimates for the
constants that measure the non-degeneracy (We use the same notation
as in Theorem 1 but use the˜to indicate that they are evaluated on the
function ũ. We define

∆ = εκ−2(ρ− ρ′)−2τ (N+)2

∆′ = εκ2(ρ− ρ′)−2τ−1(N+)2

the RHS of the equations (69). We have:

T̃ ≤ T + Cδ−1∆′

Ũ ≤ U + Cδ−1∆K(U, T, ∆)

Ñ+ ≤ N+ + C∆′

Ñ+ ≤ N− + C∆′K(N+, N+, ∆′)

(71)

where K are very simple algebraic functions that will be made explicitly
in the proof.

Keep in mind that, as it is standard in KAM theory, when we re-
peat the procedure, we will show that ε will be much smaller than
(ρ − ρ′)−2τ−1, hence the estimate for the RHS in (70) is indeed much
smaller. Also, the ∆, ∆′ in (71) will be very small. Hence the intu-
ition of the step is that it reduces the domain slightly, worsens slightly
the non-degeneracy assumptions, but the error is drastically reduced.
The losses of domain will will decrease rapidly enough that there is
some domain left. Similarly, the non-degeneracy conditions will remain
bounded. The quadratic convergence of the error to zero overcomes the
other problems. This is perhaps the most important principle in the
KAM method. See the subsequent sections for details.
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In the rest of this section, we will prove Lemma 4. The most subtle
part of the proof is the estimates in points (2) and (4) of the algorithm,
but these estimates are classical estimates for small divisors. Rather
optimal versions were obtained in [Rüs75, Rüs76].

The rest of the steps are more elementary in nature. As indicated
before, the step (3) is just a perturbative argument based on Neumann
series. From this, we get (69). Then, using Taylor’s theorem for the op-
erator, we get (70). Then, given (69), the estimates (71) are just based
on the Neumann series (this is the reason why we get the functions K).

4.1. Estimates for equations involving small divisors. The fol-
lowing result is proved in [Rüs75].

Lemma 5. Assume that ω ∈ R satisfies (39). Then, given any function
η ∈ Aρ,L satisfying

∫
η = 0 there is one and only one function ϕ ∈

L2(T, CL) satisfying

(72) ∆±1ϕ = η

∫
ϕ = 0

Moreover, ϕ ∈ Aρ′,L for all ρ′ < ρ and

(73) ‖ϕ‖ρ′ ≤ Cκ−1(ρ− ρ′)−τ‖η‖ρ

The constant C is independent of L.

Since we are using the supremum norm in CL, it is clear that to prove
this result, we can just reduce to studying the equation for each of the
components. Each component can be estimated by the norm of the
function. Hence, it is clear that the final constant will be independent
of the dimension of the image.

We refer to [Rüs75, Rüs76] for the proof of a more general result (e.g.
it studies similar equations for functions defined over Td. Of course,
the constants depend on the dimension of the domain. In this paper,
we will fix functions defined over the torus).

To prove a weaker result with a worse exponent in ρ − ρ′ it suf-
fices to notice that the estimates (39) provide an upper bound for
the multipliers in (60). Using the Cauchy estimates that estimate
|ηk| in terms of ||η||ρ, one obtains the same result but with bounds
Cκ−1(ρ− ρ′)−τ−1‖η‖ρ which would also be enough for our case.

The more subtle estimates of [Rüs75] use also that the estimates (39)
cannot be saturated for k that are very close. Another version of the
estimates can be found in [dlL05] and the revised version of [dlL01]. �

We denote by ∆−1
±1 the mapping that to η associates ϕ solving (72).
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Lemma 6. For every 0 < ρ we have:

‖∆`∆
−1
±1η‖ρ ≤ |`|‖η‖ρ

‖∆−1
±1∆`η‖ρ ≤ |`|‖η‖ρ

(74)

Proof. Denoting by ϕ = ∆−1
1 η, we have for ` > 0,

∆`∆
−1
1 η(θ) =∆`ϕ(θ) = ϕ(θ + `ω)− ϕ(θ)

= [ϕ(θ + `ω)− ϕ(θ + (`− 1)ω)]

+ [ϕ(θ + (`− 1)ω)− ϕ(θ + (`− 2)ω)]

+ · · ·+
+ [ϕ(θ + ω)− ϕ(θ)]

=η(θ + (`− 1)ω) + · · ·+ η(θ)

(75)

If ` < 0, we have

∆`∆
−1
1 η(θ) =∆`ϕ(θ) = ϕ(θ + `ω)− ϕ(θ)

= [ϕ(θ + `ω)− ϕ(θ + (` + 1)ω)]

+ [ϕ(θ + (` + 1)ω)− ϕ(θ + (` + 2)ω)]

+ · · ·+
+ [ϕ(θ − ω)− ϕ(θ)]

=− η(θ − `ω)− · · · − η(θ − ω)

(76)

Hence, clearly in both cases, ‖∆`∆
−1
1 ‖ρ ≤ |`|.

All the other cases are proved in the same way or can be deduced
from the present ones. �

Remark 12. Note that the result here does not depend on the fact that
ω is a Diophantine. The fact that ω is Diophantine is used to define
∆−1
±1 as an operator on the whole space.
Note however that, for any irrational ω, the operator ∆`∆

−1
±1 can

be defined for trigonometric polynomials and we have the identities
(75),(76). Hence, the operator ∆`∆

−1
±1 is bounded in the space of

trigonometric polynomials, which makes it uniquely defined and bounded
in the whole space of analytic functions.

Remark 13. The diagonal elements of ∆`∆
−1
1 are

(77)

e2πiωk`ω − 1

e2πikω − 1
=

{
1 + e2πikω + (e2πikω)2 + · · ·+ (e2πikω)`−1 ` > 1

−1− (e2πikω)`−1 − (e2πikω)`−1 − · · · − (e2πikω) ` < −1
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The identity (77) is just the elementary sum of the geometric series
in the left. Of course, the identity for the diagonal factors can also be
obtained from the identity (75).

Notice that, since the diagonal elements are bounded by |`|, we ob-
tain that ∆`∆

−1
±1 is also bounded in Sobolev spaces.

Remark 14. Note that the identity (77) shows that ∆1∆
−1
2 is not

bounded since the diagonal terms of this operator are

(78)
e2πikω − 1

e2πik2ω − 1
=

1

e2πikω + 1

Note that the denominator becomes arbitrarily close to zero as k ranges
over the integers. Hence, it is not possible to use a simple perturbative
argument to treat the general case as a perturbation of the interactions
at length 2. We think that it would be quite interesting to see if there
is a KAM method that can deal with interactions which are a small
perturbation of a next-nearest neighbor interaction. Note that, even if
the denominators in ∆1∆

−1
2 can become small, the Diophantine prop-

erties of ω imply that to become very small, one has to take k large.
Numerical experiments [CdlL05] seem to indicate that indeed one can
find tori in this situation. We also note that formal Lindstedt type ex-
pansions can be written without too much problem. (See Section 5.1).
Of course the variational methods in [CdlL98] do not have any problem
dealing with this situation.

4.2. Estimates for the step in Lemma 4. In this section we prove
estimates (68), (69) for the sizes of the changes produced by the itera-
tive step. The proof is rather straightforward. We just follow the steps
of Procedure 1 but we take care of ensuring that all the steps are well
defined and give estimates for them.

Since we will have to loose domain repeatedly we will introduce aux-
iliary numbers ρ′′ = ρ− (ρ− ρ′)/2, We will denote ρ− ρ′ = σ. Hence,
ρ− ρ′′ = 2−1σ, ρ′− ρ′′ = 4−1σ, so that we can estimate from below the
distance between two of these by Cσ.

In step 1) we estimate ‖h′E[u]‖ρ ≤ N+ε using the Banach algebra
property. Then, by Lemma 5, we have ‖ϕ‖ρ′′ ≤ Cκ−1σ−τN+ε.

The assumption H3 implies that ‖C−1
0,1,1‖′ρ ≤ Tδ−2 as an operator

from Aρ′′ to itself. The assumption implies that ‖G‖ ≤ α also as an
operator from Aρ′′ to itself.

Since, by assumption H3, Tα < 1, C0,1,1 + G is invertible in Aρ′′ .
Moreover,

‖(C0,1,1 + G)−1 − C−1
0,1,1‖ ≤ α(1− αT )

≤ 1/2T
34



Using the fact that C0,1,1 is a multiplication operator, we write the
equation for T ∈ R as(∫

T
C−1

0,1,1

)
T +

∫
T

[
(C0,1,1 + G)−1 − C−1

0,1,1

]
T

= −
∫

T
(C0,1,1 + G)−1ϕ

(79)

By assumption H3, (
∫
C−1

0,1,1) is an invertible matrix and its inverse
has norm is less than U . We have shown that the operator T →∫

(C0,1,1 +G)−1−C−1
0,1,1T has norm less than 1/2T . By the assumptions

U ·T ≤ 1/2, we can treat (79) as a perturbation of the first term. Since
the RHS of (79) has norm less than 1/2T‖ϕ‖ρ′′ , we have that

|T | ≤ 2U(1/2)T‖ϕ‖ρ′′

≤ 1

2
‖ϕ‖ρ′′

Hence ‖T + ϕ‖ρ′′ ≤ 3
2
‖ϕ‖ρ′′ .

Applying Lemma 5 we obtain (68).
Therefore,

‖ũ− u‖ρ′ ≤ ‖ũ− u‖ρ′′ ≤ ‖h′w‖ρ′′

≤ Cκ−2σ−2τ (N+)2ε
(80)

Applying Cauchy inequalities, we obtain

‖h̃′ − h′‖ρ′ ≤ (ρ′′ − ρ′)−1‖ũ− u‖ρ′′

≤ Cκ−2σ−2τ−1(N+)2ε
(81)

The equations (80), (81) give us (69) for the solution of (50).
We note that the solution consists on applying identities to factor

the equation (50) into several different steps. We have shown that the
solution is in Aρ′ for every ρ′ < ρ. Nevertheless it is important to
realize that the solution is unique among the solutions in Aρ̂ for any
0 < ρ̂. Hence, the solution of (50) is unique among the solutions in Aρ̂

for any 0 < ρ̂. This establishes the uniqueness claim in Lemma 4.

4.2.1. Proof of (70). The proof consists in showing that ũ is still in the
domain of the functional E. Then, we just add and subtract appropri-
ate terms and estimate what remains using the Taylor estimates.

Because of (69) and the assumption (67) we obtain that

(82) ||u− ũ||ρ′ ≤ δ/4

where δ denotes – see the assumptions in Theorem 1 – the distance
of the range of u to the boundary of the domain of the interaction.
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Therefore, we have

E[u + v] = h′−1(h′E[u] + h′E ′[u]v) + (E[u + v]− E[u]− E ′[u]v)

= h′−1vE[u]h′ + (E[u + v]− E[u]− E ′[u]v)

= h′−1(v
d

dθ
E[u]) + (E[u + v]− E[u]− E ′[u]v)

(83)

The first identity is just adding and subtracting. The second equation
uses that v solves equation (50) and the third identity is just (48).

Using the Cauchy inequality, the Banach algebra property and the
estimates for v obtained in (80), we have:

(84) ‖(h′)−1(v
d

dθ
E[u])‖ρ′ ≤ Cκ−2σ−2τ−1(N+)2N−ε2

The equation (82) tells us that we can apply the estimates in Lemma 1
to each of the terms defining the error E and we obtain:

‖E[u + v]− E[u]− E ′[u]v‖ρ′ ≤
1

2

∑
L

MLL‖v‖2
ρ′

≤ C

(∑
L

MLL

)
κ−4σ−4τ (N+)4ε2

(85)

Adding (84) and (85) and using the obvious estimates σ−4τ ≤ σ−4τ−1

we obtain (70).

4.2.2. Proof of the estimates for the change in the induction hypothesis
in Lemma 4. We use the notation introduced in (46) and denoting by
γ̃L the one corresponding to ũ instead of u. Given the estimates (69)
and (67), we have (82) that tells us that we can apply Lemma 1.

We first observe that

dist(γ̃L(Tρ′),C−Domain(HL))

≥ dist
(
γL(Tρ), C−Domain(HL)

)
− ||γL − γ̃L||ρ′

Since ||γL − γ̃L||ρ′ = ||u − ũ||ρ′ , applying (69), we see that the new
function ũ satisfies assumption H2 with

δ̃ = δ − εκ−2(ρ− ρ′)−2τ (N+)2‖E[u]‖ρ

If we do that, we see that the ML do not need to be changed because
they are the supremum of functions over an smaller set.

36



We also note that, by Cauchy estimates, we have that, by the mean
value theorem,

||∂0∂1H1(u(·), u(·+ ω))− ∂0∂1H1(ũ(·), ũ(·+ ω))||ρ′
≤ 2||u− ũ||ρ′
= 2M1∆

Using that ∂0∂1H1(u(θ), u(θ+ω)) is invertible for all θ, we obtain, us-
ing the Neumann series that if ∆ is small enough, so is ∂0∂1H1(ũ(·), ũ(·+
ω)) and we get the bounds claimed in (71).

Adding and subtracting, we also get

||C0,1,1−C̃0,1,1||ρ′
≤||∂0∂1H1(u(·), u(·+ ω))− ∂0∂1H1(ũ(·), ũ(·+ ω))h′(·)h′(·+ ω)||ρ′

+ ||∂0∂1H1(u(·), u(·+ ω))(h′(·)− h̃′(·)h′(·+ ω)||ρ′
+ ||∂0∂1H1(u(·), u(·+ ω))h′(·)(h′(·+ ω)− h′(·+ ω)||ρ′

≤2M1∆N2
+ + M1∆

′N+M1∆
′N+

=∆′(2M1(N
2
+ + N+)

From this, we deduce immediately the claim in (71) using the Neu-
mann series.

4.3. Iteration of the inductive step and convergence to a solu-
tion. The rest is very standard and can be done by invoking some of
the implicit function theorems in the literature. For example, [Zeh75,
Zeh76, Van02, dlLV00]. See [dlL01] for an exposition of different meth-
ods. However, since we have used some non-standard spaces it is per-
haps clearer to run over the argument giving the convergence. We hope
that this will make this paper more self-contained.

We consider a system which satisfies the hypothesis of Theorem 1.
We label with a subindex n all the elements corresponding to the n
iterative step.

We start with a function defined in a domain parametrized by ρ0.
We choose a sequence of parameters ρn = ρn−1 − ρ02

−n−1. We try
the iterative step so that the n iterative step starts with a function un

defined in a domain ρn−1 and ends up with a function un+1 defined in
a domain of radius ρn+1.

We note that assuming that we can take J steps to which we can ap-
ply Lemma 4 and that, in all the steps, the non-degeneracy conditions
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are bounded uniformly, we have:

εJ ≤κ−2ρ−η
0 2−J(2τ+A)K(N+, N−, T, T̃ )ε2

J−1

≤κ−2−2·2ρ
−η)(1+2)
0 2−(J+2(J−1))η)K1+2ε22

J−2

≤κ−2−2·2−···−2·2J

ρ
−η)(1+2+···+2J )
0

2−(J+2(J−1)+···+2J−1·1)ηK1+2+·+2J

ε2J

0

≤ (κ−4ρ−2η
0 2BK2)2J

(86)

where B =
∑∞

j=0 j2−j.
We see that under the assumptions in Theorem 1, the term in paren-

thesis in the RHS of (86) is smaller than 1. Indeed, by making ε0 small
enough, we can make it as small as desired.

4.4. Uniqueness of the solution. The proof of uniqueness is based
on uniqueness of the solution of (50). In the language of [Zeh75], the
uniqueness shows that there is an approximate inverse. We give the
easy details.

We assume that, besides u, there was another solution û. We note
that, since they are solutions, applying Lemma 1

(87) 0 = E[û]− E[u] = E ′[u](û− u) + R(u, û− u)

with ||R||ρ ≤ M ||û− u||2ρ.
Now, denoting as before h = Id +u and recalling that

(E ′[u]h′)(θ) =
d

dθ
E[u] = 0

we can write the equation (87) as:

(88) h′(θ)(E ′[u](û− u))(θ)− (û− u)(θ)(E ′[u]h′)(θ) = −h′R

The left hand side of (88) is the equation we studied in Section 3.4 and
the subsequent sections.

Noting that the factorization (58) of the LHS of (88) achieved in
Section 3.5 shows that

∫
h′R = 0. Using the uniqueness statements for

the solution, we conclude that for any 0 < ρ′ < ρ,

(89) ||u− û||ρ′ ≤ Cκ−2(ρ− ρ′)−ηK||u− û||2ρ
where K is an algebraic expression which depends on the non-degeneracy
constants.

If we apply repeatedly the argument above choosing a sequence of
domains

ρn = ρn−1 − 2−nρ0,
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we obtain proceeding as in (86)

(90) ||u− û||ρ′ ≤
(
C2κ−4K22Bρ−2η

0 ||u− û||ρ
)2n

with B the same fixed number before
If C2κ−4K22Bρ−2η

0 ||u− û||ρ < 1, we conclude, by taking the limit as
n →∞ in (90) that

||u− û||ρ0/2 = 0

which is the desired conclusion about uniqueness of the solution.

5. Lindstedt series for quasiperiodic solutions in
Extended systems.

If our model has a small parameter µ measuring the distance to
integrable, it is natural to try to solve the equations (13) perturbatively.
That is, as formal power series in µ. These formal power series have
been considered for Hamiltonian systems and are called the Lindstedt
series. In this section, we want to discuss the existence of these series
to all orders (see Lemma 7) and the convergence in some cases (see
Lemma 2).

5.1. Existence of Lindstedt series to all orders. In the case of
Hamiltonian systems, the existence of Lindstedt series to all orders is
proved in [Poi99]. The proof presented here is similar to the proof in
[FdlL92, dlL01] for the twist mapping case.

Lemma 7. Consider the model given by

(91) HL(x0, . . . , xL) =
1

2
AL(x0 − xL)2 + µH1

L(x0, . . . , xL; µ)

where all the H1
L are analytic in all the variables.

Assume that

H1 The frequency ω satisfies

(92)

∣∣∣∣∣∑
L

2AL(cos(2πkω)− 1)

∣∣∣∣∣ ≥ κ|k|−τ ∀k ∈ Zd − {0}

H2 The interactions HL satisfy for some ρ > 0 and for all µ of
sufficiently small modulus∑

L

||H1
L||ρ ≤ R∑

L

|AL| ≤ R
(93)

where A is uniform in µ.
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Then, there exist uµ(θ) =
∑∞

0 µiui(θ) a formal power series in µ
with coefficients analytic in θ solving the equation (20) in the sense of
formal power series.

The solution is unique if we impose the normalization condition

(94)

∫
T
dθ u(θ; µ) = 0

Moreover, in the case that the interactions are finite range and trigono-
metric polynomials, the result above can be improved in two ways:

• We do not need the assumption (92). It suffices that∣∣∣∣∣∑
L

2AL(cos(2πkω)− 1)

∣∣∣∣∣ 6= 0 ∀k ∈ Z

• The un are trigonometric polynomials of degree less than Kn.

It is interesting to compare the conditions of Theorem 1 and Lemma 7.
Of course, one important difference is that Theorem 1 is not formulated
with reference to an integrable model, whereas Lemma 7 is. Neverthe-
less, for the common ground of nearly integrable systems, they present
differences. In particular, the Diophantine conditions are different.

Note that the non-degeneracy conditions of Theorem 1 are implicit
in the choice of the unperturbed model. We also note that the condi-
tion on ω in Theorem 1 is the standard Diophantine condition whereas
the Diophantine condition in Lemma 7 is the condition (92). The
later condition depends on the coefficients of the integrable part of the
interaction. We will explore the relation between the Diophantine coef-
ficients of both results later. In Lemma 8 we will find some conditions
on the coefficients AL that ensure that the sets of ω satisfying the con-
ditions of Lemma 7 are of full measure. Nevertheless the conditions
(92) stronger than those in Theorem 1.

The most interesting difference among the conditions of Theorem 1
and Lemma 7 comes from the fact that Theorem 1 requires much weaker
decay properties in the interaction than those in the main KAM result,
Theorem 1.

Of course, one can wonder whether the Lindstedt series whose ex-
istence is asserted in Lemma 7 converge or not. In Lemma 2 we will
present a result that asserts the convergence of the series provided that
the model satisfies the hypothesis of Theorem 1 as well as the hypoth-
esis of Lemma 7. The argument is an indirect one based on the KAM
theorem following an argument of [Mos67].

Since some of the hypothesis of Lemma 7 are weaker than those of
Theorem 1 we think it would be interesting to see if there is a direct

40



proof of convergence of the Lindstedt series, specially if such a proof
can deal with decay conditions such as those considered by the KAM
approach Theorem 1. See [Eli96, CF94, Gal94, GG95] for proofs of
some standard KAM theorems using the method of compensations.

Proof. In our case, the equation (20) reads

0 =
∞∑

L=1

+AL(u(θ + Lω) + u(θ − Lω)− 2u(θ))

+ µ
∑

L

∑
k+j=i

∂jHL

(
θ + kω + u(θ + kω; µ), . . .

, θ(k + j)ω + u(θ + (k + j)ω; µ), . . .

, θ + (k + L)ω + u(θ + (k + L)ω; µ); µ
)

(95)

We denote

[Γu](θ) =
∞∑

L=1

AL(u(θ + Lω) + u(θ − Lω)− 2u(θ))

We write equation (95) as

Γuµ = N (uµ)

where N (u) is defined as the other terms in (95).

Proposition 2. In the conditions (93), given a function

u : Tρ̃ × {µinC||µ| < β} → C

such that

• For each fixed θ, u(θ; µ) is polynomial in µ.
• u(θ; 0) = 0.

Then, the sums ∑
L

HLγL
µ (θ)

converge uniformly in θ ∈ Tρ̃ × {µ ∈ C||µ| < a1 for some a1 > 0.

The proof of Proposition2 is just the observation that for small
enough µ then u(θ, µ) is in the domain of definition of the all the
HL and, therefore the sup norm the HL controls the composition. �

By the assumption (92), we see that equations for ϕ given η with
η(θ) satisfying

(96) Γϕ = η
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have an analytic solution if and only if
∫

η = 0. Moreover, the solution
is unique up to an additive constant. In particular, it is unique if we
add the normalization

∫
ϕ = 0. The solution of (96) is given, in Fourier

coefficients by

ϕk = ηk/
(∑

L

2AL(cos(2πkω)− 1)
)

Hence, if η is an analytic function and ω satisfies the inequalities (92),
we obtain that ϕ is analytic. If η is a trigonometric polynomial, pro-
vided that the RHS of (92) does not vanish, we obtain that there is
trigonometric polynomial ϕ solving the equations (96).

Equating the terms independent of µ in (95), we obtain

Γu0 = 0

Which shows that u0 is a constant. If we impose the normalization
(94)

Equating terms of order µn, n ≥ 1 on both sides of (95) we obtain

(97) Γun = ηn(u0, u1, . . . , un−1)

where ηn is a polynomial whose coefficients depend on the derivatives
of HL up to order n − 1. Note that, by the assumption H2, using
Proposition 96, we conclude that if u0, . . . , un−1 are analytic functions
on some strip so is ηn, therefore, we can formulate the equations for
un+1. Our next task is that the equations can be solved and that the
solution un+1 is analytic in Tρ′ for any ρ′ < ρ̃.

Note that if the interactions are finite range and all of the terms are
trigonometric polynomials, it follows by induction that ηn is a trigono-
metric polynomial and that therefore, the un is a trigonometric poly-
nomial.

Using the discussion of the solutions (96), we see that if we know
u0, . . . , un−1 we can find un provided that

∫
ηn = 0 and that this un is

unique under the normalization (94), which implies
∫

un = 0. Hence,
Lemma 7 is proved once we show that we have

(98)

∫
T
dθ ηn(u0(θ), u1(θ), . . . , un−1(θ)) = 0

To establish this, we now assume that we have u≤n(θ) =
∑n

i=0 µiui(θ)
satisfying (95) up to errors of order µn+1.

We have, therefore that

(99) Γu[≤n] −N (u[≤n]) = µn+1ηn + µn+2Sn
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By (3), we have

0 =

∫
(h≤n)′

[
Γu[≤n] −N (u[≤n])

]
= µn+1

∫
ηn(h[≤n])′ + O(µn+2)

(100)

Taking into account that (h[≤n])′ = Id +O(µ), we obtain that the
RHS of (100) is µn+1

∫
ηn +O(µn+2) therefore, we obtain, equating the

terms of µn+1 in (100), we obtain
∫

ηn = 0 as desired. �

5.2. On the Diophantine conditions (92). The conditions (92) are
different from the standard Diophantine conditions. In this section, we
study these conditions. Our first result is a result on the abundance of
numbers satisfying (92).

Definition 1. We say that a function F of period 1 is non degenerate
when

(1) It has a finite number of zeros in [0, 1).
(2) All the zeros are of finite order. That is, if F (z0) = 0, there

exists N ∈ Z such that F (N)(z0) 6= 0.

Lemma 8. With the notations of Lemma 7. Assume that the function

F (z) =
∑
L=1

2AL(cos(2πz)− 1)

is a non-degenerate function in the sense of Definition 1.
Then, the set of ω satisfying (92) is of full measure.

Note that that the simplest case of the Lemma above is the case when
F (z) is a C2 Morse function. This condition is generic among the set of
coefficients |Aj| ≤ Cj−(3+δ) endowed with the product topology. When
the interaction is finite range, only a finite number of AL are zero, so
that the function F (z) is a trigonometric polynomial which satisfies
the assumption of Lemma 8.

As a corollary of Lemma 8, we obtain that, under the conditions of
the Lemma – in particular, for finite range interactions – there is a full
measure set of ω satisfying both (39) and (92). On the other hand, for
any Diophantine ω, it is possible to choose AL so that the denominators
in (92) become zero (or grow very fast).

Note that the functions F (z) always satisfy F (0) = 0. The conditions
(92) are, roughly, that the values of ωk−n are not too close to the zeros
of F . Hence, in particular, all the numbers that satisfy Definition 92
are Diophantine. On the other hand, it is not hard to produce numbers
that are Diophantine but do not satisfy Definition 92.
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Proof. By the assumption on F , since F has a finite number of critical
points, it has a finite number of intervals of monotonicity. Therefore,
given an interval I, F−1(I) is the union of a number of intervals smaller
than the number of intervals of monotonicity of F . We have bounds
for the length

|F−1(I)| ≤ A|I|α

Therefore, the sets

Cκ,τ,k = {ω||F (k · ω)| ≤ κ|k|−τ}
are the union of a finite number of regions bounded by planes.

If Br ⊂ R is a ball of radius r we can estimate the measure

|Cκ,τ,k ∩Br| ≤ Cκαk−(τ+1)α

We observe that if (τ + 1)α > 1, we have

| ∪k∈Z−{0} Cκ,τ,k ∩Br| ≤ Cκα

This shows that, if we take κ small enough, we can make the measure
of the sets where the inequality (92) fails as small as desired. Note that,
as a consequence of the proof, if we take κ ≤ Cr1/α, we can ensure that
there is a point satisfying (92) in any ball of radius α. �

5.3. Convergence of the Lindstedt series. The argument is based
in an argument due to [Mos67], but it is simpler in this case. The basic
idea is that we can apply a rapidly convergent quadratic procedure in
a space of functions which are analytic in µ.

We note that an interaction of the form (91), if we take u = 0, the
system satisfies the non-degeneracy assumptions of Theorem 1. More-
over, taking µ small enough, we obtain that the smallness assumption
are satisfied. Of course, to apply Theorem 1 we need that the interac-
tions decrease fast enough.

Theorem 2. Consider a system of the form (91) satisfying the hy-
pothesis of Lemma 7 Assume furthermore that for small µ, the system
satisfies uniformly the hypothesis of Theorem 1 and that the frequency
ω is Diophantine.

Then, the Lindstedt series produced in Lemma 7 converges in a neigh-
borhood of zero.

Note that this theorem requires both the Diophantine conditions
of the Lemma 7 and the rapid decrease conditions for the interaction
on Theorem 1. We think that it would be quite interesting to study
whether there is a proof of convergence of the Lindstedt series without
using fast decay properties of the interaction. This would lead to a
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proof of existence of smooth quasi-periodic solutions in situations not
covered by Theorem 1.

Proof. Following [Mos67], we consider a space of functions which are
jointly analytic in µ, θ and consider the original problem of finding so-
lutions of (17) as a functional analysis problem in the space of analytic
functions of the variables µ, θ.

We claim that there is Theorem analogous to Theorem 1 for functions
depending analytically on extra parameters.

We just indicate the argument. Some more details on how to lift
KAM theorems from functions to families of functions can be found in
[dlLO00, Van02, dlLV00]. The paper [dlLO00] lifts the main theorem
from [Zeh75] to spaces of families obtain KAM theorems for some very
degenerate system.

We consider spaces of functions Ar,ρ whose domain is the set |µ| ≤ r,
θ ∈ Tρ.

We will assume that the functions are continuous in the whole do-
main and analytic in the interior. We endow these spaces with the
norm of the supremum.

Our goal is to show an analogue of Theorem 1 for families depend-
ing on parameters. That is, we will assume that we have families of
interactions depending analytically on parameters and satisfying the
non-degeneracy assumption uniformly for the parameters. Then, if we
have a analytic family that satisfies the equilibrium equations with
enough accuracy, then there is another family which satisfies the equi-
librium equation exactly. Moreover we also have the same estimates
for the distance between the approximate solution and the true one.

We note that the Procedure 1 can be implemented in spaces of func-
tions depending on the parameter µ. Provided that the estimates as-
sumed in Theorem 1 hold uniformly, we observe that for each value of
the parameter µ we obtain uniform estimates of the same form as those
we had before.

We can also check that if the family u(θ; µ depends analytically in the
parameter µ, then the improved solution also depends analytically in
µ. This is obvious from the fact that the procedure to find ũ consists
only in composing the function with the interaction terms, applying
some elementary perturbation argument and then, solving some small
divisors whose coefficients do not depend on µ.

Therefore, we conclude that the new solution belongs to Ar,ρ̃ and
that the new error satisfies the same estimates.

The rest of the argument for convergence does not need any change.
As was emphasized in Theorem 1, we obtain that the size of ε which
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is allowed in the argument, only depends on the size of the non-
degeneracy conditions.

Once we have that the result Theorem 1 can be adapted to families,
we see that we can take as initial guess just u(θ, µ) = 0. Then, we
obtain that there is a solution which is analytic.

By the uniqueness of the Lindstedt series, we obtain that the Lind-
stedt series coincides with the Taylor expansion of the function. �

6. A normal hyperbolicity approach for quasi-integrable
systems with finite range

In this section we study the normal hyperbolicity properties of the
quasi-integrable systems whose interaction terms are in (91).

We note that the equilibrium equations are written explicitly in (15).
In order to be able to use a a dynamical description, we will assume
that the interaction has finite range. That is, we will assume that
Aj = 0 for j ≥ J .

For µ = 0, the equilibrium equations are linear. They are:
(101)
(xn+1+xn−1−2xn)+A1(xn+2+xn−2−2xn)+· · ·+AJ−1(xn+J+xn−J−2xn) = 0

We can write (101) as a dynamical system in R2J . Denoting

xn = (xn+J , xn+(J−1)), . . . , xn−J+1, xn−J)

The equilibrium equations can be written as a linear system

xn+1 = Mxn

where

Mx =
( 1

AJ−1

(xn+1 + xn−1 − 2xn)

+
A1

AJ−1

(xn+2 + xn−2 − 2xn)

+ · · ·+

+
AJ−2

AJ−1

(xn+(J−2) + xn−(J−2) − 2xn)

− xn−J + 2xn

, xn+J−1, xN+J−2, . . . , xn−J+1

)
(102)

It is not hard to compute the characteristic equation for the operator
M. It suffices to try solutions of the form xn = λn in (101). The
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characteristic equation is:

0 = λJ−1(λ− 1)2 + A1λ
J−2(λ2 − 1)2 + · · ·+ AJ−1(λ

J − 1)2

= (λ− 1)2
[
λJ−1 + A1λ

J−2(λ + 1) + · · ·+ AJ−1(λ
J−1 + λJ−2 + · · ·λ1)

]
(103)

We note that the characteristic polynomial P (λ) in (103) satisfies
P (1/lambda) = P (λ)λ2J . Even if we have not consider the Hamiltonian
properties of the problem, we recall that the property above is true for
all the Hamiltonian systems. One implication is that if λ0 is a root of
the characteristic polynomial, then 1/λ0 is also a root.

From the factorization in (103), we conclude has always a double
root 1. Note also that the A coefficients are factors of the highest
degree terms in the characteristic equation. We note that for the case
A = 0 it has 0 as a root of multiplicity J − 1. We conclude that if all
the A’s are small there will be J − 1 roots (counted with multiplicity)
near zero. Because of the symmetry of the polynomial, we conclude
that their inverses will also be roots. Hence, for AJ > 0 and all the
roots small, there will be two eigenvalues exactly 1, J − 1 eigenvalues
of small modulus and J − 1 of large modulus.

The space corresponding to the eigenvalues 1 will be invariant and
will be normally hyperbolic.

If we now add a non-integrable perturbation of the system, apply-
ing the theory of persistence of normally hyperbolic manifolds [Fen72,
Fen74, HPS77], we conclude that there will be a two dimensional in-
variant manifold.

It is natural to conjecture that the system restricted to the invariant
manifold is symplectic. This would explain the persistence of the one-
frequency systems.

Of course, this approach does not give a clue of what can happen for
systems far from integrable. Since center manifolds could fail to be even
C∞ it is not clear that this approach can produce straightforwardly the
analytic results presented here. On the other hand, it seems that this
normal hyperbolicity approach can produce results in the case that the
xi are multidimensional variables.

The reason for the conjecture that the system is symplectic restricted
to the center manifold is that one can imagine that there is also a
variational principle for the restriction. Indeed, in Physics one often
finds arguments about effective theory [Ami84]. Perhaps the invariant
manifold theorems could through some light on these problems. The
effective lagrangian would be the lagrangin restricted to the invariant
manifold.
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We think that these question deserves further attention and it would
be interesting to make precise these possibilities. This would require,
in particular to make precise the theory of invariant manifolds in the
Lagrangian formalism for systems of the type we have considered.

7. Some final remarks

7.1. Numerical implementation. Note that Procedure 1 is an algo-
rithm that can be readily implemented as a numerical algorithm.

An efficient way of carrying out the computation is to keep the func-
tion u discretized as a Fourier series. Denote by N the number of
Fourier coefficients kept.

The step 1 is diagonal in Fourier series so, it has a cost O(N).
The operator G that is needed for step 2 is just a combination of

translation and evaluation of derivatives. We note that, in Fourier
series, translating or differentiating Fourier series is just an O(N) op-
eration.

If we use the Fast Fourier Transform algorithm (henceforth FFT),
we can compute the products needed in O(N log(N)). Again, the com-
putation of C0,1,1 +G)−1 is diagonal on real space, so that if we use the
FFT (cost O(N log(N))), then the computation is just O(N).

The computation of T is just division by a number. Actually, for the
next step, the only thing that we need is to project (C0,1,1 + G)−1(ϕ),
which in Fourier series can be accomplished by setting to zero the
zero’th order coefficient.

Then, the computation of w is O(N) in Fourier coefficients.
The computation of ũ is O(N) in real space (some of the computa-

tions before give us a computation of h′, which is diagonal in Fourier
space anyway).

In summary, the steps of Procedure 1 are diagonal either in real space
or in Fourier space. These diagonal operations cost O(N) operations.
The FFT needed to switch from real space to Fourier representation
have a cost of O(N log(N)).

Therefore, Procedure 1 can be implemented in O(N log(N)) opera-
tions.

Preliminary implementations in [CdlL05] indicate that indeed it is
possible to implement this algorithm quite efficiently.

We also note that the existence of a variational principle (22) can
also be taken advantage using minimization methods. In the case that
the system is ferromagnetic, it is not too hard to show that all the
invariant circles are minimizers [MF94b]. Hence, in the case that the
system is ferromagnetic, one can combine the good global properties of
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the variational method till one gets close enough to a solution so that
one can use the Newton method. For the case of twist mappings this
is the method that was used in [Per74, Per79].

7.2. Some systems that are very close to integrable. In the fol-
lowing we remark that there are some cases of the models (15) which
can be made to be very close to integrable. These systems seem to
have very remarkable statistical mechanics properties since for them,
the waves move very easily. We think that this deserves further explo-
ration.

It is amusing to note that (6) can be considered as a multistep dis-
cretization of the equation for the pendulum with step µ1/2. This is
a method which is accurate up to errors (µ1/2)4 = µ2. Note that the
pendulum equation, being a one degree of freedom Hamiltonian sys-
tem has a conserved quantity and is integrable in open sets that do not
intersect a level set of critical values of the energy – the separatrices.
Hence, (6) can be considered as an integrable system up to errors µ2.

If we choose A = −2−4 in (13) we obtain a discretization of the
pendulum which is accurate up to errors ε3 and, therefore very close
to integrable.

The calculation is standard in multistep methods. We set xn =
x(µ1/2nα) and we denote x′n = x′(µ1/2α) and similarly for higher deriva-
tives. We have:

xn+1 + xn−1 − 2xn = x′′nµα2 +
2

4!
x(4)

n µ2α4 + O(µ3)

xn+2 + xn−2 − 2xn = x′′nµα2 +
2

4!
24x(4)

n µ2α4 + O(µ3)

Therefore

(xn+1 +xn−1−2xn)−2−4(xn+2 +xn−2−2xn) = (1+2−4)α2x′′nµ+O(µ3)

Choosing α = (1 + 2−4)−1/2 – this is just a change in time, we obtain
that the equilibrium equation matches the pendulum equation to a
higher the required order.

The calculations to higher order are also straightforward. If we carry
out to higher order the expansions of xn+j + xn−j − 2xn, multiply by
Aj and add them, for j = 2, . . . M , the conditions that the coefficients
for the even derivatives higher than the second vanish are just

1 + 24A2 + 34A3 + · · ·M4AM = 0

1 + 26A2 + 36A3 + · · ·M6AM = 0

· · ·
1 + 2M−1A2 + 3M−1A3 + · · ·MM−1AM = 0
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The above set of equations can be solved explicitly since they are
the well known Vandermonde determinants. Hence, by choosing

Aj = −
j∏

k=2

(1− k−2)−1(1− (j + 1)2k−2),

in (15), we obtain systems that are integrable up to a order µM .
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