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Abstract. The free energy plays a fundamental role in statistical and condensed matter

physics. A related notion of free energy plays an important role in the study of hyperbolic

dynamical systems. In this paper we introduce and study a natural notion of free energy
for surfaces with variable negative curvature. This geometric free energy encodes a new type

of marked length spectrum of closed geodesics, which lies between the well-known marked
length spectrum (marked by the corresponding element of the fundamental group) and the

unmarked length spectrum. We prove that the free energy parametrizes the boundary of the

domain of convergence of a Poincaré series which also encodes this spectrum. We also show
that this new length spectrum, or equivalently the geometric free energy, is not an isometry

invariant. In the final section we use tools from multifractal analysis to effect a fine asymptotic

comparison of word length and geodesic length of closed geodesics.
We hope that our geometric understanding of free energy will provide new insight into

this fundamental physical and dynamical quantity.

0. Introduction

The free energy, which can be viewed as a generating function for the sequence of energy
levels of a system, plays a fundamental role in statistical and condensed matter physics.
A related notion of free energy plays an important role in hyperbolic dynamical systems,
where it can be viewed as a generating function for the orbital averages of a function over
the closed orbits. In this paper we introduce and study a natural notion of free energy for
surfaces with variable negative curvature.

The geometric free energy is defined as a generating function for the lengths of closed
geodesics indexed by the lengths of corresponding words in the fundamental group, as
follows. Let V be a compact negatively curved surface and let Γ denote a set of generators
for the fundamental group π1(V ) of V . The symbol γ will always denote a closed geodesic,
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[γ] the free homotopy class of γ in π1(V ), and l(γ) the geodesic length of γ. Every free
homotopy class contains a unique closed geodesic. We let |γ| denote the word length of the
free homotopy class of [γ], i.e., where |γ| the smallest number of generators from Γ needed
to represent an element in [γ]. We define the free energy of V by

F (t) = FΓ,V (t) ⊜ lim
n→+∞

1

n
log

∑

[γ]∈π1(V )
|γ|=n

exp (−tl(γ)).

This definition arises as a special case of the dynamical free energy for the geodesic flow,
where the geodesic flow is coded by the geometric Bowen-Series Markov partition. This
is carefully explained in Section 1. We also prove that the free energy parametrizes the
boundary of the domain of convergence of the related Poincaré series

∑

[γ]∈π1(V )

exp (−al(γ)− b|γ|).

There is extensive literature on the rigidity properties of the marked and unmarked
length spectrum of closed geodesics on a negatively curved surface. The marked length
spectrum consists of the lengths of closed geodesics marked by the corresponding free
homotopy class of the geodesic, i.e., the sequence of pairs {([γ], l(γ)), γ ∈ π1(V )}. The
marked length spectrum is an isometry invariant [Cro, Ota]. The unmarked length spec-
trum is the sequence consisting of just the lengths of the closed geodesics and is known
not to be an isometry invariant [Bus, Mck, Sun, Vig, Wol]. Our geometric free energy
encodes a third type of marked length spectrum of closed geodesics given by the sequence
of pairs {(|γ|, l(γ)), γ ∈ π1(V )}, which lies between the marked length spectrum and the
unmarked length spectra. The relationship between the word length and geometric length
of closed geodesics was first studied by Milnor [Mil]. We show that this length spectrum,
or equivalently the geometric free energy, is not an isometry invariant.

In the final section we use tools from multifractal analysis to effect a fine asymptotic
comparison of word length and geodesic length of closed geodesics. We hope that our
geometric understanding of free energy will provide new insight into this fundamental
physical and dynamical quantity.

This note can be viewed as a continuation of [PW], where the authors study the free
energy of a classical one-dimensional lattice spin system as a dynamical invariant. All of
the facts from thermodynamic formalism we require can be found in [Rue] and [PP].

1. Free Energy and Poincaré series.

Let φt : T1V → T1V denote the geodesic flow on the unit tangent bundle of V . Our
approach starts with the Bowen-Series coding [BS, BKS] to obtain a symbolic representa-
tion of the geodesic flow on T1V . While there are other methods of constructing Markov
partitions for the geodesic flow [Bow, Rat, Sin], this method, which codes intersections of
geodesics with sides of a fundamental polygon, is the only known coding scheme which
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faithfully codes the lengths and combinatorics of (essentially) all closed geodesics. It pro-
duces a suspension flow over a subshift of finite type with a roof function whose Birkhoff
sum over a periodic orbit of period n is precisely the length of the corresponding closed
geodesic, where n is also the word length in π1(V ) of the closed geodesic. A very detailed
account of this approach appears in the article of Adler and Flatto [AF], to which we refer
the reader for more details.

The Bowen-Series coding starts with a specially chosen fundamental polygon for the
fundamental group Γ of V in the universal covering surface [AF, Appendix I]. In particu-
lar, each side of the finite-sided polygon is a subarc of a closed geodesic. One then identifies
various pairs of the geodesic subarcs using covering transformations corresponding to some
element of Γ [AF, Theorem 3.1]. One then verifies that the restrictions of these identifi-
cation maps to the boundary of the universal covering (which can be identified with the
unit circle) determines a map T of the unit circle which is Markov [AF, Theorem 3.4 and
Theorem 6.1] and eventually expanding [AF, Theorem 6.3]. By construction, T is orbit
equivalent to the action of Γ on the boundary of the universal covering.

In order to study particular properties of the geodesic flow, it is usually necessary to
code pairs of endpoints of appropriate geodesics using two dimensional Markov Partitions
[AF, pp. 321-328]. However, for periodic points it suffices to consider only the map T . The
Markov map T is naturally coded by a subshift of finite type σ : Σ+

A → Σ+
A. There is also

a natural Hölder continuous roof function r : Σ+
A → R whose interpretation is as the time

required for points on the special geodesic arcs to intersect other special geodesic arcs under
the geodesic flow. (In practise, it is usually convenient to take r(x) = log |T ′(π(x))|, where
π is the semi-conjugacy map from Σ+

A to the circle, which only differs by a coboundary).

One then defines the suspension space Xr = Σ+
A × R/Z, where Z is the group of maps

generated by (x, y) → (σx, y − r(x)), and the suspension flow σt
r : Xr → Xr induced

by the maps (x, t) → (x, y + t) [PP]. The geodesic flow φt and the suspension flow are
related by the existence of a bounded-to-one continuous surjection p : Xr → T1V such that
φt ◦ p = p ◦ σt

r.

Moreover, given two negatively curved metrics on the same topological surface, the
underlying subshifts of finite type σ : Σ+

A → Σ+
A from the Bowen-Series coding of their

geodesic flows are the same. Finally, every closed geodesic γ corresponds to a periodic orbit
{x, σx, . . . , σn−1x} of Σ+

A with σnx = x, where the Birkhoff sum Snr(x) =
∑n−1

k=0 r(σkx) =
l(γ) and n = |γ|. This correspondence is one-to-one, except for an at most finite set of
exceptional prime closed geodesics, which have no effect on our results. In particular,
the exceptional closed geodesics are these corresponding to end points of intervals in the
Markov partition for T cf. [AF, p.319].

These special properties of the Bowen-Series coding are crucial for our analysis. If one
could construct a symbolic coding of the geodesic flow for any Riemannian metric satisfying
these properties, then all the results in this paper would immediately carry through to this
metric. In [AR] the authors state technical conditions for a more general Markov partition
to possess these properties, but there are very few examples in dimensions greater than
two which have been shown to satisfy these properties.
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Using the Bowen-Series coding, we define the free energy of the negatively curved surface
V to be the free energy of the roof function r : Σ+

A → R, i.e.,

F (t) = FΓ,V (t) ⊜ P (−tr),

where P denotes the thermodynamic pressure defined on all real valued continuous func-
tions on Σ+

A. Using the periodic orbit definition of pressure [PP] we have

P (−tr) = lim
n→+∞

1

n
log

∑

σnx=x

exp (−tSnr(x)).

It immediately follows from faithful coding properties of closed geodesics for the Bowen-
Series coding that the free energy of V has the following geometric realization, which we
define to be the free energy of V

F (t) = FΓ,V (t) ⊜ lim
n→+∞

1

n
log

∑

[γ]∈π1(V )
|γ|=n

exp (−tl(γ)).

It follows from standard facts in thermodynamic formalism [PP, Rue] that this free
energy is a smooth and strictly convex function.

We now define a modified Poincaré series for V and Γ by

ρ(a, b) = ρΓ,V (a, b) ⊜

∑

[γ]∈π1(V )

exp (−al(γ) − b|γ|).

Our next goal is to show that the free energy parametrizes the boundary curve separating
the domain of convergence of this Poincaré series from the domain of divergence.

We recall that by a classical result of Milnor [Mil], there exist A, B > 0 such that
A ≤ l(γ)/|γ| ≤ B for all closed geodesics γ. If we choose A = infγ l(γ)/|γ| and B =
supγ l(γ)/|γ| then using the Anosov closing lemma, it is easy to show that the ratios
{l(γ)/|γ| : γ = closed geodesic} are dense in the interval [A, B].

It follows from Milnor’s result that the Poincaré series ρ(a, b) converges provided a, b > 0
are sufficiently large. We denote by

R = R(Γ, V ) = {(a, b) ∈ R
2 : ρ(a, b) < +∞}

the domain of convergence of the Poincaré series and L = L(Γ, V ) the boundary curve of
R (see Figure 1). The following proposition provides the important link between the free
energy and the Poincaré series.

Proposition 1. The free energy F parametrizes the boundary curve L in the sense that

L = {(a, F (a)} for −∞ < a < +∞.
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Proof. Using the key property of the Bowen-Series coding we can rewrite the Poincaré
series in the following form

ρ(a, b) = ρΓ,V (a, b) ⊜

∞
∑

n=1

1

n

∑

σnx=x

exp (−aSnr(x) − bn).

By the root test, this infinite series converges if

exp (P (−ar − b)) = lim
n→+∞

(

∑

σnx=x

exp (−aSnr(x) − bn)

)1/n

< 1.

In particular, we immediately see that the sets L and R have the following simple inter-
pretation in terms of symbolic dynamics

R = {(a, b) ∈ R
2 : P (−ar − b) < 0}

and

L = {(a, b) ∈ R
2 : P (−ar − b) = 0}.

Since the pressure P (−ar − b) = 0 for (a, b) ∈ L, we see that b = P (−ar) = F (a). �

We now define the generating function for word length in π1(V ) by

G(z) =
∞
∑

n=1

zn card{γ : |γ| = n}.

This is well known to be a rational function [Can, Eps]. The next proposition states that
L is a smooth curve and identifies some special values on L.

Proposition 2.

(a) The curve L is real analytic and strictly convex.

(b) The points (0, 1) and (h, 0) lie on L, where

h = lim
n→+∞

1

n
logCard{γ : |γ| = n},

i.e., exp(−h) is the radius of convergence of the generating function G(z) for word

length in π1(V ).
(c) The asymptotic slope of L as a → ±∞ is −A and −B, respectively.

Proof. Parts (a) and (b) follow easily from standard properties of pressure [PP]. In par-
ticular, h is the topological entropy of the subshift σ : Σ+

A → Σ+
A.
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For part (c) we recall that the slope of the curve L at (a, F (a)) is F ′(a) = −
∫

Σ+

A

rdµ−ar,

where µ−ar is the Gibbs measure for −ar [PP]1 By the variational principle [PP] we have
that

hµ−ar
(σ) − a

∫

Σ+

A

rdµ−ar ≥ hµ(σ) − a

∫

Σ+

A

rdµ,

for all σ-invariant probability measures µ. Thus
∫

Σ+

A

rdµ−ar ≤ infµ

∫

Σ+

A

rdµ + 2h/a, where

h denotes the topological entropy of the subshift σ : Σ+
A → Σ+

A. In particular, letting
a → +∞, and using the weak density of probability measures supported on single periodic
orbits for the subshift, we see that

lim
a→+∞

F ′(a) = − lim
a→+∞

∫

Σ+

A

rdµ−ar = − inf
µ

∫

Σ+

A

rdµ = − inf
[γ]∈π1(V )

l(γ)/|γ| = −A.

The proof of the second part of (c) is similar. �

h

1

a

b

Asymptotic

Asymptotic

slope −B

slope −A

Figure 1. The Curve L

1A σ−invariant probability measure µ on Σ+
A

is called Gibbs if there exists a Hölder continuous function

g : Σ+
A → R such that the pressure P (g) satisfies

P (g) = sup
µ∈M(Σ+

A
)

 

hµ(σ) +

Z

Σ+

A

gdµ

!

,

where the supremum is taken over the simplex M of all σ−invariant Borel probability measures µ on Σ+
A.
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2. Free energy as an isometry invariant

Let V1 and V2 be negatively curved surfaces and let Γ be a symmetric generating set
for π1(V1). If φ : V1 → V2 is an isometry, then clearly the free energy of V1 with respect to
Γ coincides with the free energy of V2 with respect to the pushed forward generating set
φ∗Γ, i.e., FΓ,V1

= Fφ∗Γ,V2
.

Now suppose that V1 and V2 are negatively curved surfaces with generating sets Γ1 of
π1(V1) and Γ2 of π1(V2), and assume that the free energies coincide, i.e., FΓ1,V1

= FΓ2,V2
. A

natural rigidity question is whether this implies that the surfaces V1 and V2 are isometric?
In this section we show that this is, in general, false. Thus in this sense, free energy is not

a complete invariant of isometry.

Proposition 3. There exist two negatively curved hyperbolic surfaces V1 and V2 with

generating sets Γ1 of π1(V1) and Γ2 of π1(V2) such that FΓ1,V1
= FΓ2,V2

, but V1 and V2

are nonisometric.

Proof. We verify that one of the standard constructions of isospectral but nonisometric
hyperbolic surfaces [Bus, page 304], with a suitable choice of generators for the fundamental
group, provides a pair of nonisometric hyperbolic surfaces having the free energy.

We follow Buser’s description almost verbatim. The building blocks for the construction
are hyperbolic surfaces B of signature (0, 5) with boundary geodesics α1, α2, β, γ1 and γ2,
satisfying ℓ(α1) = ℓ(α2) < ℓ(β) < ℓ(γ1) = ℓ(γ2) < ℓ(η1) < ℓ(η2) ≤ 1. See Figure 2. It
follows from the collar lemma in hyperbolic geometry that the only isometry of such a five
holed sphere is the identity. The two interior closed geodesics η1 and η2 decompose the
(0, 5) surface into three (0, 3) surfaces (pairs of pants), which have been pasted together
with a one-quarter twist.

Figure 2. The building block (from [Bus])

We now glue together eight copies (building blocks) B0, . . . ,B7 of B with twist parameter
zero according to the identifications shown in Figure 3 to obtain two compact hyperbolic
surfaces V1 and V2. Buser proves that V1 and V2 are isospectral but not isomorphic. The
proof that V1 and V2 are not isomorphic is a consequence of the above mentioned collar
lemma.

We now construct a generating set for the fundamental group of V1 and V2. For, say
V1, choose all the boundary closed geodesics α1, α2, β, γ1 and γ2, as well as all the interior
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Figure 3. The surfaces V1 and V2 (from [Bus])

closed geodesics η1 and η2, for each of the eight building blocks. Several pairs of boundary
closed geodesics are glued together to form V1 and V2, and it is easy to see that of the
8× 5 = 40 boundary closed geodesics on the union of the eight building blocks, only 20 of
these are distinct closed geodesics on V1 and V2. Since V1 and V2 have genus 13, these 20
closed geodesics do not form a generating set. Since none of the interior closed geodesics
are identified, all 8 × 2 = 16 are distinct closed geodesics on V1 and V2. We let Γ denote
the generating set of the fundamental group consisting of these 20 + 16 = 36 generators.
We claim that the free energies of V1 and V2 coincide with respect to the generating set Γ,
i.e., FΓ,V1

= FΓ,V2
.

To see this, we exploit the very simple method of transplanting closed geodesics from M1

to M2, due to Buser and Bérard, and which is clearly explained in Section 11.5 of [Bus].
This provides a one-to-one length-preserving correspondence between the closed geodesics
on both surfaces. In short, Buser decomposes a closed geodesic c on V1 into a sequence
of disjoint subarcs cj , with each subarc contained in one building block, and maps the
interior of each geodesic subarc cj to the interior of a geodesic subarc c∗j on V2 using the
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family of identity mappings φkk∗ from the interior of Bk to the interior of Bk∗ . Thus with
the obvious interpretation, the transplantation mapping is the identity on the interiors of
the eight building blocks. The very simple form of this correspondence between closed
geodesics on the two surfaces is a consequence of the above mentioned fact that the only
isometry of the building blocks is the identity.

It follows that every closed geodesic on M1, which is not an element of Γ, and its
transplanted closed geodesic on M2, have the same length, and furthermore, have the
same number of intersections with the closed geodesics in Γ. This completes the proof. �

3. The rigidity of a new type of marked length spectrum

For a hyperbolic or negatively curved surface V , one defines the unmarked length spec-

trum of V to be the set of lengths of all closed geodesics, i.e., LV = {l(γ), γ ⊂ π1(V )}.
The marked length spectrum of V consist of the lengths of closed geodesics, marked by the
corresponding element of the fundamental group, i.e., the sequence MV = {(l(γ), [γ]), γ ⊂
π1(V )}. There is a significant amount of literature studying whether, or to what extent,
the marked and unmarked length spectrum determine the metric [Bus, Cro, McK, Ota,
Sun, Vig, Wol].

Motivated by our study of free energy, it is natural to study the length spectrum which
is marked by the word length of the closed geodesic with respect to a fixed set of generators.
This natural length spectrum lies between the well-known marked length spectrum and the
unmarked length spectrum. More precisely, let V be a compact negatively curved surface
and let Γ denote a set of generators for the fundamental group π1(V ) of V . We define the
Γ word length marked length spectrum of V

MΓ,V = {(l(γ), |γ|), [γ] ∈ π1(V )}.

Let V1 and V2 be negatively curved surfaces and let Γ be a generating set for π1(V1).
If φ : V1 → V2 is an isometry, then MΓ,V1

= Mφ∗Γ,V2
. Now suppose that V1 and V2 are

negatively curved surfaces with generating sets Γ1 of π1(V1) and Γ2 of π1(V2), and assume
that MΓ1,V1

= MΓ2,V2
. It immediately follows from definitions that FΓ1,V1

= FΓ2,V2
.

A natural rigidity question is whether MΓ1,V1
= MΓ2,V2

implies that the surfaces V1 and
V2 are isometric? The following proposition shows this is false.

Proposition 4. There exist two negatively curved hyperbolic surfaces V1 and V2 with

generating sets Γ1 of π1(V1) and Γ2 of π1(V2) such that MV1,Γ1
= MV2,Γ2

, but V1 and V2

are not isometric.

Proof. The counterexample constructed in Section 2 also serves as a counterexample here.
By construction, every closed geodesic on V1 and its transplanted mate on V2 have the
same length and the same word length with respect to the generating sets Γ1 and Γ2

respectively. �
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4. Asymptotic comparison of geodesic length and word length

For every unit tangent vector v one can consider the associated geodesic with ċ(0) = v.
For any T > 0, the geodesic arc c([0, T ]) can be “closed up”, by adding a second piece of
geodesic arc of bounded length, to give a closed geodesic which we denote γv,T . If the limit
limT→+∞ l(γv,T )/|γv,T | exists, then it is easy to see that the limit α = α(v) is independent
of the particular construction of γv,T . The Birkhoff ergodic theorem implies that for almost
all v (with respect to the Liouville measure) the limit does exist and attains the constant
value α0, where A ≤ α0 ≤ B.

For A ≤ α ≤ B we define the dimension spectrum for geodesic length and word
length

f(α) = dimH

{

v ∈ T1V : lim
T→+∞

l(γv,T )

|γv,T |
= α

}

,

where dimH denotes Hausdorff dimension [Fal]. The next result can be viewed as an
asymptotic refinement of Milnor’s result.

Proposition 5.

(1) The dimension spectrum f(α) is an analytic function on (A, B).
(2) For each α ∈ [A, B], the dimension spectrum f(α) ≤ 3, with equality if and only if

α = α0.

(3) For each α ∈ [A, B], the level set {v : limT→+∞ l(γv,T )/|γv,T | = α} is uncountable,

dense, and supports an invariant Gibbs measure.

Proof. This is an immediate application of results on multifractal analysis in [Pes, PeW,
Wei]. From the symbolic dynamics we can see that a unit tangent vector v, and its fu-
ture orbit, correspond to an infinite word x ∈ Σ+

A. Moreover, l(γv,T )/|γv,T | converges to
α if and only the Birkhoff average Snr(x)/n converges to α. Since the roof function r
is not cohomologous to a constant, the multifractal analysis for the Birkhoff sum gives
results corresponding to (1), (2), and (3) at the symbolic level, and using the above men-
tioned correspondence, these immediately translate into the geometric results claimed in
the proposition. �
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