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ABSTRACT. We investigate the Cauchy problem for a nonlinear evolution equa-
tion, formulated in an abstract Lebesgue space, as a generalization of various
Boltzmann kinetic models. Our main result provides sufficient conditions for
the existence, uniqueness, and positivity of global in time solutions. The proof
is based on ideas behind a well-known monotonicity method, originally de-
veloped within the existence theory of the classical Boltzmann equation in
L'. Our application examples concern Smoluchowski’s coagulation equation,
a Povzner-like equation with dissipative collisions, and a Boltzmann model
with chemical reactions.

1. INTRODUCTION AND FORMULATION OF THE PROBLEM

In a couple of well-known papers in kinetic theory, Arkeryd [1] introduced a
monotonicity method (see also [2]) to solve the full initial value problem (i.v.p.) for
the space-homogeneous Boltzmann equation in L'. To this end, a priori estimates
(mass and kinetic energy conservation) were cleverly used to replace the original
Boltzmann equation by an equivalent one, suitable for monotone iteration with re-
spect to the natural order of L!-real. To handle Boltzmann collision operators with
unbounded integral kernels, Arkeryd introduced monotone sequences of collision-
like operators with bounded kernels. This resulted into a convergent approximation
scheme, applicable to operators satisfying the so-called Povzner inequality [1], [3].
Arkeryd proved the convergence of the scheme, by taking advantage of the mono-
tone completeness of L', and applying conveniently the additivity of the L'-norm
on the positive cone in L'.

The above line of reasoning has proved applicable to other Boltzmann-like equa-
tions (see, e.g., [4]-[8]). However, in the absence of general results, extending Ark-
eryd’s monotonicity scheme to other models has not been always straightforward.
Indeed, each model has actually required a rather specific analysis, where the con-
struction of a suitable operator approximation, like in Arkeryd’s original argument,
seems to be a key issue.

Under these circumstances it is tempting to develop the ideas behind Arkeryd’s
method within a more general framework, in view of further possible applications.

2000 Mathematics Subject Classification. 47J35, 34G20, 47H07, 76P05, 80A32.

Key words and phrases. nonlinear evolution equation, abstract Lebesgue space, isotone op-
erator, positive semigroup, Boltzmann equation, Povzner equation, Smoluchowski coagulation
equation, dissipative collisions, chemically reacting flows.

1 Institute of Space Sciences & Institute of Mathematical Statistics and Applied Mathematics
of the Romanian Academy, Bucharest.

2 Permanent address: Institute of Space Sciences, P.O. Box MG-23, Com. Magurele, Ilfov,
RO-077125, Romania. E-mail: grunfeld@venus.nipne.ro; grunfeld@ifin.nipne.ro.

1



2 C. P. GRUNFELD

Given the above motivation, in this paper we consider the i.v.p.

T oun=ewn-awn so=pex. ¢>0, @
formulated in a separable Banach lattice X, with positive cone X .

Specifically, X is an abstract Lebesgue (AL) space, i.e., a Banach lattice whose
norm satisfies

llg + Al = llgll + IRl (g,h € X5). (1.2)

(We refer to Section 2 for useful terminology and facts from Banach lattice theory.)

In Eq. (1.1), Q" and Q~ are mappings defined from R, x D to X, for some
D C X such that DN X is dense in X (we adopt the convention Ry := [0, 00)).

The following properties are assumed for Q*:

a) For a.e. t > 0, the operators Q*(t,-) : D — X are positive (i.e., map DN X
into X ) and isotone (i.e., are order-preserving mappings).

b) The mappings Ry 3 t — Q% (t,g(t)) € X, are measurable for any Lebesgue
measurable function g : Ry — X that satisfies g(t) € DN X4 a.e. on R;.

An important special case of the above setting is the autonomous problem (i.e.,
the terms Q* (¢, f) = Q*(f) do not depend explicitly on time).

We recall that a function f : Ry — X is a strong solution of Eq. (1.1), if it
is absolutely continuous on R, , differentiable a.e. on Ry, satisfies Eq. (1.1) a.e.
on Ry, and verifies the initial condition. Equivalently, f is a strong solution of
Problem (1.1) if it is solution of the integral equation

F&) = fo+ / Q(s, f(s))ds (£ >0), (1.3)

where the integral is in the sense of Bochner.

We are interested in the existence and uniqueness of positive (i.e., in X ) strong
solutions of Eq. (1.1), under additional hypotheses ((Ag)-(A4s) in Section 3) which
abstract further properties of the Boltzmann model considered in [1], and enables
us to extend Arkeryd’s monotonicity techniques to our setting.

More precisely, as will be seen later on, assumptions (Ag)-(A3) guarantee some
dissipation (conservation) properties for Eq. (1.1) in the following sense: There
exists a positive, densely defined, closed linear operator A : D(A) C X — X such
that, for any sufficiently regular positive solution f(t) € D(A?) of Eq. (1.1), the
quantity [|Af(¢)|| is dissipated (conserved), i.e., is decreasing (constant) in ¢, and
|A2f(t)]| is locally bounded in ¢. In particular,

IAf@ON < [[Afoll - (2> 0). (1.4)

The law of decrease of ||Af(t)|| (formula (3.5) in Section 3) generalizes a priori
estimates introduced in [1]. In determining the behaviour of ||A2f(t)||, a major
role appears to be played by an abstract version (formula (3.6) in Section 3) of the
Povzner inequality [1], [3].

We are also interested in the following problem in X, related to Eq. (1.1)

df
G =AFQD. FO)=foe X (t>0), (15)
with @ as in Eq. (1.1). Here A is the infinitesimal generator of a Cy group of
positive linear isometries on X, which commutes with A.

Our main result, Theorem 3.1 formulated in Section 3, provides sufficient con-

ditions for the existence and uniqueness of positive, strong solutions to problem
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(1.1). In the same section, Proposition 3.1 yields information on the dissipation
properties of Eq. (1.1) and additional moment-like estimations . Finally, Corollary
3.1 extends the results of Theorem 3.1 to the case of mild solutions (cf. Section 3)
of problem (1.5).

The proofs of Theorem 3.1 and Proposition 3.1 are detailed in Section 4. This
is achieved within an abstract analysis, along the monotonicity ideas of [1], but
without appealing to any operator approximation as in Arkeryd’s original argument.

Thus, the results obtained in [1] for the autonomous, conservative example of
the Boltzmann equation are extended to a more general, abstract framework. The
latter includes both autonomous and non-autonomous equations, as well as models
with dissipation (conservation) properties, in the sense discussed before.

Various models of the classical kinetic theory can be regarded as particularized
versions of Egs. (1.1) and (1.5). In this respect, besides the space-homogeneous
Boltzmann equation considered in [1], and the Boltzmann-like models discussed
in [4]-[8], one can also mention the Povzner equation [3], the so-called generalized
Boltzmann equation [9], and the Smoluchowski’s coagulation equation [10]-[11].
Other illustrations may come from quantum kinetics. Also, some kinetic models of
applied science [12] can be related to (1.1) and (1.5).

In the above examples, QT and @~ are usually the so-called gain (creation)
and loss (destruction) nonlinear operators of the considered model, respectively.
In general, A is related to physical quantities specific to each model. Formula
(1.4), with inequality (equality) sign, implies the dissipation (conservation) of those
quantities. Finally, in some cases, A is the so-called free-streaming operator.

Section 5 is devoted to three basic applications: the continuous Smoluchowski’s
coagulation equation, a space-dependent Povzner-like model with dissipative col-
lisions [7], and a generalized Boltzmann model with chemical reactions [6]. We
obtain improved statements and simplified proofs to some known results, as well
as a unified view-point on the existence theory of global in time solutions. In par-
ticular, Theorem 5.1 provides the existence of strong solutions to the continuous
Smoluchowski’s coagulation model with general initial data, including both the case
of finite and infinite initial mass. Theorem 5.1 seems also to bring some novelty, as
it proves the uniqueness of the above solutions under rather general assumptions
on the coagulation kernel (see (5.4) in Section 5). Similar results can be stated
for the discrete Smoluchowski coagulation equation. Further, the results obtained
for the space-dependent Boltzmann model with dissipative collisions, can be easily
transcribed to the space-homogeneous version of the model (which can be regarded
also as an equation for granular flows [13], [14]). The last application of Section
5 proves a more general version of an earlier result [6] on the Boltzmann equation
with chemical reactions.

Although our work refers only to the Cauchy problem, mixed problems can be
also considered, under suitable monotonicity conditions.

2. PRELIMINARIES

We begin with some terminology and facts related to Banach lattices [15], [16].
As mentioned in Introduction, the frame of our analysis is a separable AL-space
X with norm ||-||, order <, and positive cone X,. Related to the order of X, we
shall also use the standard notations (g > h)<(h < g), as well as (g < h)<(h >
9)<(g < hand g # h). In addition, for any g € X, we denote |g| := g+ + g—,
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where g, := gV 0 and g_ := (—g) V0. Examples of AL-spaces are L'-real and
the real subspace of self-adjoint trace-class operators (with trace norm). Actually,
according to Kakutani’s theorem (see, e.g., [15]), every AL-space is isometrically
isomorphic (as an ordered vector space) to a space of type L'. AL-spaces are
monotone complete, in the sense that any increasing (i.e., directed <) norm-bounded
family converges. The norm of an AL-space is order continuous, i.e., any directed >
filters that converges to 0 is also norm convergent to0 0. A map I' : D(T') C X — X,
with D(T') N X4 # 0, is called positive (strictly positive) if 0 < T'g for 0 < g € D(T)
(if0 < Tgfor 0 < ge D). Further, I : D(I') C X — X is called isotone (strictly
isotone) if I'g < T'h, whenever g < h (if I'g < Th, whenever g < h), g,h € D(T).
Obviously, if T' : D(I') € X — X is isotone, 0 € D(T') and 0 < I'(0), then T is
positive.

Here, we introduce two more definitions:

A subset M C X is called p-saturated (positively saturated) if M N X # 0,
and from 0 < g < h € M, it follows that g € M.

An operator ' : D(T') C X — X is o-closed (closed with respect to the order)
if for any increasing sequence {g,} C D(T') such that {g,} is increasing and con-
vergent (in symbols, ) to some g, and {T'g,} is Cauchy, one has g € D(T") and
lim,, o0 I'gn, = T'g. Clearly, any closed mapping is also o-closed.

Concerning the integration of X-valued real functions, we recall the following
property (see, e.g., [17]): Let I : D(I') C X — X be a closed linear operator. If h
is a Bochner integrable function defined on some measurable set S € R, with values
in D(T"), and T'h is Bochner integrable, then

T /S h(s)ds = /S Th(s)ds. (2.1)

We further note that, as X is an AL-space, if h : R — X is Bochner integrable,
then property (1.2) gives
‘ / h(s)ds
S

for any measurable set S of R, the integral being in the sense of Lebesgue’s integral.
Next, we recall that a positive Cy semigroup on X is a Cy semigroup of positive
linear operators on X. If {S'},. is a positive Cy semigroup on X, then its infini-
tesimal generator G is densely defined and closed (as the infinitesimal generator of
a Cj semigroup). Moreover, G* is densely defined and closed, k = 2,3, ....
Additional properties are stated in the following lemma.
Let I denote the identity on X. Set D (G) := N2, D(G*) N X,

- / 1h(s)]| ds (2.2)
S

Lemma 2.1. a) The sets D(G*)N Xy, k=1,2,..., and DF(G) are dense in X .
b) Suppose that there is some number v > 0 such that

(G+7Dg <0 (9€D(G)NXy). (2.3)

Then D(GF)N X,, k = 1,2,..., and D (G) are p-saturated. Moreover, for any
he Xy,
0 < S*h <exp(—yt)h (t>0), (2.4)

and one can find an increasing sequence {hyn} C D°, such that h,, /* h asn — oc.
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Proof. a) We simply apply Gelfand’s construction (see [17]: p. 308), and approxi-
mate any h € X, by a sequence h,, = h as n — oo, where

DY(G) > Iy = n/oo o(nt)Sthdt (n=1,2,..) (2.5)

for some ¢ € C§°(0, 00; R} ) satisfying
/ p(t)dt = 1.
0

b) We show by induction that
Let 0 < g <h € D(G)N X, and n € N sufficiently large. Recall that {S'},. is
positive, and observe that (—@G) is positive, by (2.3). Then clearly, -

gn = n/ exp(—nt)Stgdt = n(nl — G)~'g € D(G) N X, (2.6)
0

and the sequence {g,} is increasing. Consequently, {—Gg,} is also positive and
increasing. Since {—Gg,} is norm-bounded by ||Gh||, it follows that {Gg,} is
convergent, by the monotone completeness of X. On the other hand, (2.6) implies
lim,, o gn = g, hence g € D(G), because G is closed.
Now a straightforward induction, applying the positivity of (—G), shows that
D(G*) is p-saturated for all k (hence, D%°(G) is also p-saturated).
To prove (2.4), note that if the number p > 0 is sufficiently large, then by (2.3),
(ul =G)"'h < (u+7)""h (heXy). (2.7)
Now we get (2.4), applying (2 7) in the formula (see [17]: p. 354, Relation (Ey))
Sth = hm[ ( I-G) Y*h, (he X, t>0).
k—oo t ¢

To construct a sequence {h,} as stated in b), we apply a standard argument

of convergence with regulator: Starting with {%n} C DY as in (2.5), we choose
a subsequence {ﬁn} such that Hh —Em —i §=1,2,... Next define h, :=

infsp by, Then (2.4) implies 0 < hy, < hy, < h for all n = 1,2,.... Evidently,
the sequence {h,,} is increasing and norm-bounded by ||A||. Then by the monotone
completeness of X, there is A’ € X such that h,, / h' as n — oco. Since DY is

p-saturated and {%n} C DY, it follows that also {h,} C D. To conclude the
lemma, it is sufficient to prove that h' = h. Since clearly h' < h, we need only
show that h' > h. To this end, observe that z := )" i ‘h —71,1‘ < o0, because
o
i > N, then h—ﬁm < ez. Therefore, b’ > h—ez for any € > 0, so that h’ > h. O

< 271, Consequently, for any number ¢ > 0, there is N. € N such that if

Finally, related to Eq. (1.1) we consider the following ”dissipativity” property.
Let M be a subset of DN X dense in X.

Definition 2.1. A closed positive linear operator T' : D(T) C X — X is called of
type D on M (with respect to Eq. (1.1)) if M cD(T), Q*(t, M) c D) a.e. on
Ry, and for any g € M,

0<A(LgT,Q) = [TQ~(ho)| - [TQ*tg)| (>0 ae). (28
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If T is of type D on M, then the following property can be easily established:
Lemma 2.2. Suppose that go, g(t), h(t) € M, t > 0 a.e., with Q*(-,h(-)),
TQ* (- h(") € Li,o(Ry; Xy), and

o0 <0+ [ Qatoas (120) 29)
Then .
ITa(o)l+ [ Al h:T.Q)ds < Tl (¢ 0). (210)

Moreover, (2.10) holds with equality sign for any t > 0, provided that there is
equality in (2.9) for all t > 0.

Proof. As T is positive, obviously, T'g(t), T'go, TQ*(t, h(t)) € X,. Hence, applying
T to (2.9) and using (2.1), we obtain

0<Tglt)+ /Ot O~ (s, h(s))ds < Tgo + /Ot TO*(s,h(s))ds (t>0).  (2.11)

Then, by property (1.2),

ITg@I + < [[Tgoll +

)

| 0Q (s, h(s))ds | TLQ* (s h(s))ds

which implies immediately (2.10), by virtue of (2.2) and (2.8).
A similar argument shows that if there is equality in (2.9), for all ¢ > 0, then
(2.10) also holds true with equality sign for any ¢ > 0. O

3. MAIN RESULT

We first complete the setting of Eq. (1.1) with additional hypotheses. In par-
ticular, we introduce in a precise manner the operator A, mentioned in the first
section.

Specifically, we assume that there exists a linear operator A : D(A) C X — X,
with D(A) C D and Q* (¢, D(A*) N X)) C D(A*1), ¢ > 0 ae., k = 2,3, such that:

(Ao) The operator (—A) is the infinitesimal generator of a Cy semigroup of pos-

itive linear operators on X, and there is a number \g > 0 such that
(A= Xol)g >0 (g€ D(A)NXy). (3.1)

(A1) For a.e. t >0,

A(t,g) == A(t,;4,Q) >0 (g € D(A*) N X), (32)

and the map D(A2) N X, > g — A(t,g) € Ry is isotone.
(A2) There exists a non-decreasing convex function a : Ry — Ry such that

a(llAgl)Ag — Q™ (t,9) 20, (9€D(A)NXy, t2>ae), (3.3)
and for a.e. ¢t > 0, the map D(A)N X, > g a(||Agl)Ag — Q (t,9) € X
is isotone.

(A3) There exists a non-decreasing function p : Ry — Ry, and there is an
operator Ay : D(A;) C X = X of type D on D(A?) N X, such that

—A(t,g;A%,Q) < p(lAugll) [A%g]] (9 € DA*) N X4, t> 0 ace). (3.4)
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We assume that for a.e. ¢ > 0, the operators Q*(¢,-) are o-closed and their
common domain D is p-saturated.

At this point, some remarks are in order.

By Lemma 2.1a) and assumption (Ao), it follows that D(A*) N X, k= 1,2....,
and DY := D°(A) are p-saturated and dense in X . Obviously, (3.1) shows that
A is positive. Thus invoking (3.2), we get that A is an operator of type D on
D(A%) N X, and this has the following important consequence:

If a positive solution f of Eq. (1.3) is sufficiently regular, i.e., if f(t) € D(A2),
t >0, ae, and if Qi(;f()): AQi(vf()) € Ll(R—F;XJr)a then by (210): apphed
with equality sign,

IAF ()] + / A(s, £()ds = [|Afoll  (t>0). (3.5)

This shows that ||Af(%)|| is decreasing in time and satisfies (1.4), as mentioned in
Section 1. In particular, if A(t,g) = 0 for all g € D(A%) N X, t > 0 a.e., then
[[Af(t)|| is conserved for all ¢ > 0.

Formula (3.5) is essential in our analysis, as a generalization of a priori estimates
introduced in [1] and [5]-[8].

Next, observe that inequality (3.4) is of the form

At g1, Q) < pr([AglD Tyl (9 € Ma, t>0 ae), (3.6)

where I' : D(T') C X — X is some positive linear operator, and M; C D(T') N
D(A%) N X, is such that Q*(t, M) C D(T'), t > 0 a.e., while pr : Ry — R, is
some non-decreasing function.

Formula (3.6) can be regarded as an abstract correspondent to the Povzner
inequality [1], [3], and plays a key role in extending the argument of [1] to our
analysis.

Here, it should be emphasized that the above setting does not exclude the case
Ay = A when, obviously, some of the above conditions become redundant.

Under hypotheses (4g)-(A3), we can now state our main result:

Theorem 3.1. Let either of the following two sets of conditions be fulfilled:

a) QT (t, D) C DL, t >0 ae, AFQT(-, D) C L}, (R Xy), k=1,2,.... In
problem (1.1), fo € D(A*)N X .

b) The operators QT do not depend explicitly on t. In problem (1.1), fo €
D(A®)N Xy

Then there exists a unique positive strong solution of the i.v.p. (1.1) such that
f(t) € D(A?) for any t >0, and ||A2f()|| is locally bounded on R .

Moreover, f,Af € C(Ry; X,). Furthermore, f satisfies Eq. (3.5) and

[A2F (D] < exp(p(l|A1folt) [|A%fol| (2> 0). (3.7)

The proof of the above result will be given in the next section. Here we only
remark that Theorem 3.1a) is also applicable to the autonomous case, but, clearly,
its conditions are different from those of Theorem 3.1b).

The following proposition yields additional useful estimates for the solutions of
Eq. (1.1). For simplicity, we remain in the conditions of Theorem3.1a). However,
similar results are valid when Theorem3.1b) holds, as can be seen by inspecting the
proof of the proposition, given in Section 4.

Assume that I' : D(T') € X — X is a closed, positive linear operator. Let f be
a solution of Problem (1.1), provided by Theorem 3.1a).
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Proposition 3.1. a) Suppose that T is of type D on DF. Then f(t) € D(I'), t >0,
and
ITFOI < IITfoll (& > 0). (3-8)
b) Suppose that T' and pr are as in (3.6), with My D D°. Then f(t) € D(I'),
t >0, and
ITF@I < exp(pr([[Arfol)t) ITfol| (¢ >0). (3.9)

It should be pointed out here, that in applications, the choice of A and A; may
be not unique. In some cases, the role of A; and T" may be played by suitable
powers of A, while, in other examples, A = A; =T (see Section 5).

Theorem 3.1 has an immediate noticeable consequence, in the following situation:

Consider Eq. (1.5) and let {U"}, g be the Cy group of positive linear isometries
on X, generated by A.

We recall that any strong solution of Eq. (1.5) satisfies

ft)=U'fo+ / Ut Q(s, f(s))ds (£ > 0), (3.10)

but the converse is not generally true.
We say that f € C(Ry;X;) is a mild solution of Eq. (1.5) if it satisfies Eq.
(3.10). If f is a solution of (3.10), then setting F'(t) := U=t f(t) in (3.10), we get

F@t) = fo —+—/0 Qu(s, F(s))ds (t>0),

hence, by differentiation,

%F =Qut,F)=Q{t,F)—Qyt,F), FO)=/fo, (t>0 ae) (3.11)

where Qu(t,-) := U~'Q(t,U") and Q¥ (t,-) := U~'Q*(t,U").
Suppose that U'D(A) = D(A) and U'A = AU? on D(A) for every t > 0. Simi-
larly, assume that UD(A;) = D(A;) and U'A; = A,U? on D(A;) for all £ > 0.
Now Q% and Qu are well defined as maps from R x D(A) to X, the last equation
is of the form (1.1), and we can state the following consequence of Theorem 3.1a):

Corollary 3.1. Let Q*(¢t,D) C DY, t > 0 a.e., A*QT(-,Ug) € L}, .(Ry; X)
forallg € D, k=1,2,..... Suppose that fo € D(A%) N X, in Eq. (1.5). Then
Problem (1.5) has a unique positive mild solution f such that f(t) € D(A?) for
any t > 0 and ||A2f()|| is locally bounded on Ry . Moreover, f,Af € C(Ry;X;).

Furthermore, f satisfies Eq. (3.5) and inequality (3.7).

Proof. Note first that U'D(A¥) = D(A*) and UtA*g = AkUlg for all g € D(AF),
teR k=12.. In particular, U*DY = DI for all ¢t € R. These and the
commutation properties of U? with A; imply that the operators Q% satisfy the
general conditions (domain conditions, measurability, isotonicity, o-closedness, and
p-saturation) imposed on Q% by Theorem 3.1a). Further, it is straightforward to
check that the conditions of (Ag)-(As) for the triplet (A, @, a) are also satisfied
by (A, Qu, a). Indeed, if g € D(A?) N X, then A(t,g; A, Qu) = A(t,Ulg) and
A(t,g; A1, Qu) = A(t,Utg; A, Q), t > 0 a.e. Moreover,

a(llAgl)Ag — Qp(t,9) = U~ [a(|AU'g|)AU'g - Q™ (t,U'g)], g€ D(A)NX,
for a.e. t > 0. Finally, by inequality (3.4), we get
—A(tg; A%, Qu) = —A(LU'g: A%, Q) < p (M U'g])) [ AUl = p (I1A1g]) A%
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forall g€ D(A®)N X4;t>0 ae. O

A correspondent to Proposition 3.1, applicable to Corollary 3.1, can be readily
obtained. The modifications in the reformulation of the proposition are obvious
and include additional hypotheses for the commutation of U? with I' and T',,.

We end this section with a few considerations, providing an insight into the
argument of Theorem 3.1, and explaining the role of assumptions (Ag)-(As).

Being interested in the existence of strong positive solutions of Eq. (1.1), we
would like to solve the equation by iteration. Unfortunately, this cannot be directly
done, because of the form of (). However, we can start from an equivalent problem,
inspired from [1], as follows:

Formula (3.5) implies that any strong positive solution of Eq. (1.1) (in the
regularity class for which (3.5) is valid) is also a solution to the problem

STHalARIDAS = B, £. ). FO)=heX, (20, (1)

Here a is as in (As), and B is formally defined by

B(t,g,h) :=Q<t,g<t>>+a(||Ag<t>||+ / A(s,h<s>>ds> Agl®), (t20 ac)

(3.13)

for all g(t) € D(A)N X4 and h(t) € D(A%) N Xy with AQ*(-,h(-)) € L}, (R ; X1).

Conversely, any positive strong solution of Problem (3.12) is a solution of Eq.
(1.1), provided that it satisfies (3.5).

Further, by (4p) and Lemma 2.1b), the operator L = —a(||A fo||)A is the infini-

tesimal generator of a Cy positive semigroup {Vt}tZO’ and
0 < V'h <exp(—a(l[Afol)dot)h <h (he Xy). (3.14)

Then, any solution of Eq. (3.12) is also a solution of the mild problem

t
) =Vifo+ /0 VS B(s, f, f)ds, (3.15)

the integral being in the sense of Bochner.

The last equation presents some advantages for monotone iteration. Indeed, as
will appear later, g — B(¢,g,h) and h — B(t,g,h) define positive and isotone
mappings. Then, as {V*},. is positive, the iteration

filt) =0,  fot) =V fo,

t
fut) =Vifo+ / VI B(s, fa_1, fn_2)ds (n =3,4,..) (3.16)
0

is positive and increasing.

Recall now that X is monotone complete. Then to show that the sequence
{fn(t)} is convergent, it is sufficient to prove that it is norm-bounded. To this end,
one can hopefully use the dissipation property (3.2). The limit f*(¢) of {f.(t)} is
expected to satisfy (3.15), i.e., to be a mild solution of Eq. (3.12). Moreover, under
suitable regularity conditions on fo, one can actually find that f*(¢) is also a strong
solution of Eq. (3.12). Finally, to show that f*(¢) is a strong solution of Eq. (1.1),
one needs only prove that it satisfies Eq. (3.5). To this end, one can use (3.4).
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4. PROOFS OF THEOREM 3.1 AND PROPOSITION 3.1

The main difficulty behind the argument of Theorem 3.1 comes from the nonlin-
ear and singular nature of Q*. Thus, before studying the convergence of the itera-
tion (3.16), we need a rather careful domain compatibility and regularity analysis,
to ensure the consistency of the iteration (3.16). To this end, we first investigate
the properties of @Q* and of the operator B formally defined in (3.13).

We start with some simple inequalities.

Let g € D(A%) N X 4. Then (3.1) gives

llgll < A" [IAgll < A* [A%g]]. (4.1)
In addition, applying (3.1) to Q% (¢, g), using (3.2), (3.3), and again (3.1), we get
[QF . 9)|| < X" [[AQF (. 9)|| < A" [[AQ™ (k. 9)
< a(llAgDA" [[A%]| < arg™ [A%g[DAG [A%g]] (120 ace). (4.2)
Notice the following obvious consequences of (4.1) and (4.2).
Remark 4.1. Q*(t,0) = 0 and A(t,0) =0 a.e. on R, .
Let A®:=1.
Remark 4.2. If g : Ry — X is measurable, with g(t) € D(A?), t > 0, a.e., and
[A%g]| € Ly, (R.), then g, A**g, and A*Q* (-, g(-)) are in L, (Ry; X4), k=0, 1.

loc

The next result makes precise the monotonicity properties of B.

Lemma 4.1. Let g;,h;, © = 1,2, satisfy the conditions of Remark 4.2. Suppose
that g1(t) < g2(t) and hi(t) < ho(t) a.e. on Ry. Then B(-,g;,h;) € L}, .(Ry; X1),
1,7 = 1,2. In addition, for a.e. t >0,

0 < B(t,g1,h) < B(t, g2, h2). (4.3)

Proof. The first assertion in Lemma 4.1 is immediate from Remark 4.2, and from
assumptions (A1) and (A4s).
To prove (4.3), define

yilt) == / Als, hi(s))ds (i =1,2), (4.4)

and observe that 0 < y;(¢) < y»(t), because of the isotonicity of A(t,-) (cf. (4;1)).

Next, as a is non-decreasing (cf. (A4z)), clearly F(z,y) := a(z +y) —a(z) > 0
for all z,y > 0. Besides, for each x > 0, the function Ry 3 y — F(z,y) € Ry is
non-decreasing. Since a is non-decreasing and convex (cf. (42)), it follows that for
each y > 0, the function Ry > z — F(z,y) € Ry is also non-decreasing: indeed,
the derivative a' of a is a.e. well defined, positive and non-decreasing, hence,

Fa'n) ~ Fle) = | (@t +6) —a(x + O] de > 0 (45)

forall 0 <z <z* and y > 0.
Further observe that 0 < B(t,g1,0) < B(t,g2,0), by (A2) and the isotonicity of
Q7 (t,-). Then, the definition of F' and the obvious inequality Ag; () < Aga(t) give

0 < B(t,91,h1) = B(t,91,0) + F (A1 ()|, w1.(£)) Aga (2)
< B(t,92,0) + F (A1 (D)1, 91 (2)) Aga(?)- (4.6)
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But the monotonicity properties of F' imply the inequalities

0 < F([Agi®)ly1(8) < F ([Ag2(®)1],51(8) < F ([[Ag2(8)I], 92(2))
which, applied in (4.6), lead immediately to (4.3). O

The next two lemmas give a precise meaning to f,,(t) formally defined by iteration
(3.16), and refer to some useful properties of the iteration.

Lemma 4.2. Let n=1,2,....

a) Under the conditions of Theorem 3.1a), let fo € D°. Then fu(t), Q= (2, fo(t))
€ DY a.e. on Ry. Moreover, A*Q*(-, fo (")) € L}, (Ry;X4), k=0,1,....

b) Assume the conditions of Theorem 3.1b). Then fn(t) € D(A®) N Xy and
QE(fa(t)) € D(A2)N X4 ; t > 0. Moreover, A*Q*(f,) € L}, (Ry;X4), k=0,1,2.

Furthermore, in both cases a) and b), A¥f, € C(Ry; Xy), k=0,1,2, and f, is
a.e. differentiable on Ry .

Proof. a) It is sufficient to show that for each T > 0 and n = 1,2, ..., there is
gn,7 € DS such that

0< full) <gor (0<t<T ae). (4.7)

Indeed, as DY is p-saturated, applying (3.3) we find that Q™ (¢, gn,7) € DY a.e.
on Ry, and A*Q~(-,gn1) € L}, ,(Ry; X1 ) for all k =0,1,2,.... The same proper-
ties are verified by QT (¢, gn.7) and A*Q7T (-, g,.1), respectively, as it follows from
the assumptions of Theorem 3.1a) and (4.2). Then (4.7) implies immediately the
statement a) of the above lemma, because D3° is p-saturated and the operators
A*Q*(t,-) are positive and isotone for a.e. t > 0; k = 0,1, ....

It remains therefore to prove (4.7). To this end, we proceed by induction.

First set g1,7 := 0 and g2, := fo. Then (4.7) is trivially verified for n = 1,2.

Next, let ¢ > 3 and T' > 0 be fixed (but arbitrary). Suppose that for each
n = 1,2,..,q — 1, there is some g, € DY that satisfies (4.7). By the above
considerations and the properties of A and a, clearly B(t,gn,1,9gn-1,7) € DY,
0<t<Tae,and A*B(,g07,9n1.7) € L}(0,T; Xy), k = 1,2,.... Then, as A*
is closed, we can take advantage of (2.1) to write

t t
Ak / B(sagnfl,T;gan,T)dS = / AkB(S:gnfl,Tagan,T)ds (0 S t S T) (48)
0 0

forallk=1,2,...and n=1,2,...,q— 1.

Now observe that f,_1(t) < gq—1,7 and fy—2(t) < gq—2,1 satisfy the conditions
of Lemma 4.1 for g; < g2 and h; < hs, respectively. Then applying conveniently
(3.14) and (4.3) in (3.16), and invoking (4.8), we get

T
0<f,(t) < fo +/ B(s,gq-1,1,9q—2,1)ds := g7 € DT (0<t<T). (4.9)
0

This concludes the induction argument and the proof of a) (as T' > 0 is arbitrary).
b) It is sufficient to show that property (4.7) is verified by g, r € D(A?) N
X . Indeed, if g, v € D(A%) N X, then, evidently, Q* (g, r) is time-independent.
Moreover, the hypotheses on Q* give Q¥ (g, 7) € D(A%) N X,. Consequently,
trivially (in the autonomous case), A*Q*(g,.7) € L'(0,T; X), k = 0,1, 2.
As before, if g1 7 = 0 and g2, 7 = fo, then (4.7) is trivially verified for n = 1, 2.
Let ¢ > 3 and T > 0 be fixed. Suppose that for each n = 1,2,...,q — 1, there is
some g, 7 € D(A*) N X, that satisfies (4.7). Then B(t, g—1,1,gq—2,7) € D(A*) N
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X4,0<t<T,because QF (gn1) € D(A?) N X4. But the semigroup V' is of class
Co, with the infinitesimal generator L = —a(||A fo||)A, hence fg V*hds € D(A) for
all h € X, t > 0. Consequently, for any 0 <t < T,

t t
/ VI B(T, gq-1,759q2.1)ds = / VEB(T, 91,1 9q—2,1)ds € D(A*) N X
0 0

(4.10)
As a is positive and non-decreasing,

B(t,94-1.,17:9¢271) < B(T,94- 11,94 271) (0<t<T). (4.11)

Further, making use of Lemma 4.1, as in the proof of a), applying again (3.14)
and (4.3) in (3.16), and combining with (4.11), we obtain

t
0§h@§h+/V%W@&4m%%ﬂ®(Wﬁﬁﬂ- (4.12)
0

Now invoking (4.10), we are led to

T
fa(t) < fo +/ VEB(T, gy—1,1,9g—2,1)ds :== go7 € DA )N X, (0<t<T),
0

(4.13)
concluding the proof of b) (since T is arbitrary).

To end the proof of the lemma, note in case a) that A*B(-,gn.1,9n—17) €
Llloc(R-l—;X-l-)a hence by (43)7 we get AkB('vfn—l,fn—Q) € Llloc(R—F;X-i-); k =
0,1,2,.... Incase b), if k = 0,1,2, then B(T, gn—1.1,gn—2,1) € D(A*)N X, so that
(4.3) and (4.11) give A¥B(-, fo—1, fn—2) € L}, (Ry; Xy ), k= 0,1,2. As A% is closed,
one can then make use of (2.1), and find that A* commutes with the Bochner inte-
gral, when applied to (3.16), k = 1,2. This implies A*f, € C(0,T;X,), k=0,1,2.

Finally, to show that the r.h.s. of (3.16) is a.e. differentiable on Ry, we simply
take advantage that L = —a(||Afo]|)A is the infinitesimal generator of V. O

The sequence {f,(t)} was so far expected to approximate the solutions of Eq.
(3.15). Under the conditions of Lemma 4.2, as fy,(t) is differentiable, we could
consider the sequence {f,(t)} to approximate the strong solutions of Eq. (3.12)
(and of Eq. (1.1)). To this end, we start by differentiating (3.16), and obtain

d
dt

Integrating again Eq. (4.14), we obtain an equivalent formula, valid for n > 3,

Falt) = Bt fat, fuoz) — a(AKIDAS()) (E>0 ae. n>3).  (4.14)

mm=h+AQ@m4@m

t s
# [ o (I8 @1+ [ A fama(oar) Afams ) = allAaDASn(o)] .
0 0
(4.15)
Lemma 4.3. If f, is as in Lemma 4.2, then for any t > 0, the sequence {fn(t)}

is increasing. Moreover, if n > 2, then

h@fﬁ+£@@h4®M5 (4.16)
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and

IAfu(B)] + / A(s, fu1(5))ds < [[Afoll. (4.17)

Proof. Evidently, 0 = f1(t) < fo(t) < f3(t) a.e., and a straightforward induction,
applying (4.3), shows that {f,(¢)} is a.e. increasing.

For the rest of the proof, first note that (4.16) implies (4.17): Indeed, (4.16)
is of the form (2.9) (with T', go, g, h replaced by A, fo, fn, fn—1). Then Lemma 2.2
applies, because A is of type D on D(A2)N X, and AQF (-, fr—1(-)) € L}, .(Ry; X4)
by Remark 4.2.

Therefore, it remains only to prove (4.16). We proceed again by induction.

Since 0 = f1 < f2(t) < fo, and A(¢,0) = 0 a.e. (cf. Remark 4.1), it appears that
(4.16) is trivially verified for n = 2.

Let ¢ > 3 and suppose inequality (4.16) to be valid for n =2,3,...,q — 1.

If n = ¢ in (4.15), applying the positivity of a and the obvious property 0 <
Ay 1(t) < Afy(1), we get

fat) < fo+ / Q(s, fu1(5))ds

+f t @ (1@ [ AG s ) — il Af s (@1s)

According to the induction hypothesis, (4.16) holds true for n = ¢ — 1. Hence
(4.17) is also valid for n = ¢ — 1, as concluded before. Then a(||Afe—1(s)|| +
Jo A7, fo—2(7))d7)) < a(||Afol]), because a is non-decreasing. As Af,(s) is posi-
tive, clearly the integral term containing Af,(s), in the r.h.s. of (4.18) is negative.
Then (4.16) becomes true for n = ¢. This concludes the proof of the lemma. O

Let ' : D(T') C X — X be a closed, positive linear operator. If I' is of type D, or
satisfies (3.6), and f, is as in Lemma 4.2, one can characterize ||I"f,,(¢)|| as follows:

Lemma 4.4. a) Under the conditions of Theorem 3.1a) ( Theorem 3.1b)), if T is
of type D on D, (on D(A?) N X ) then for any t > 0,

ICfa@I < AITholl (n=1,2,...). (4.19)

b) Under the conditions of Theorem 3.1a) (Theorem 3.1b)), suppose that ' satisfies
(8.6) with My D D (with My 2 D(A*) N X ). Then for any t > 0,

ICfn(® < exp(pr(|ALfolDE) ITfoll - (n=1,2,....), (4.20)
with pr as in (3.6).

Proof. Lemma 4.2 implies that Q*(t, f,(t)) € D(T), for a.e. t > 0. Moreover,
LQ*(-, fa(?)) € L}, .(Ry; X4 ). Indeed, let T > 0 and g, > fa(t) be as in Lemma
42. If T is of type D on DY (on D(A?*) N X, ), then by (2.8) and (3.3), we
obtain [FQ*(t, fu(®)l| < IFQ=(t, gn.0)l| < ITQ™ (2, ga)ll < alllgnrl) ITAgn 7]
for a.e. 0 < ¢t < T. On the other hand, if T satisfies (3.6), then (3.3) implies
ITQ* ¢, fa(OII < ITQ™ (¢, S|+ pr (A1 gn 1) [Tgnrl < allgn,rl) TAgn ]+
pr(1Asguel) IPgmrll, 0 < £ < T, ae,

But (4.16) is of the form (2.9), and the above considerations show that Lemma
2.2 applies (with T instead of A). Hence,

t
ITfa ()l +/0 A(s, fa1(s); T, Q)ds < [[Ufoll (20, n=>2). (4.21)
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Now the proof of a) can be immediately concluded: if n = 1, then formula (4.19)
is trivially satisfied; if n > 2, then (4.19) is directly implied by (4.21).
To prove statement b), first apply inequality (3.6) in (4.21). It follows that

T < NIT foll +/0 prlAsfaa () ) ITfa-r(s)llds (20, n=2). (4.22)

But A; satisfies the conditions of a) in the present lemma, hence ||A1f,(t)| <
[|A1foll, ¢ > 0, n = 1,2.... Introducing the last inequality in (4.22), we obtain

t
ITfn @ < |IT foll err(lll\lfoll)/0 ITfna(s)lids (620, n=>2). (4.23)

Finally, since (4.20) is obviously satisfied for n = 1,2, a straightforward Gronwall
type induction in (4.23) concludes the proof of b). O

Remark 4.3. Since A2 satisfies the conditions for T in Lemma 4.4b), it follows
that

[Afn (]| < exp(p(lALfolDt) [A%fo]] (>0, n=1.2,..) (4.24)
with p as in (3.4).

Proof of Theorem 3.1 . We start by observing that if fo = 0 in Problem (1.1),
then f(t) = 0 is a solution to Eq. (1.1), as an immediate consequence of Remark
4.1. Tt is the unique strong solution in D(A?)N X, as it follows from formula (3.5).

Moreover, if 0 # fo € D(A2)N X4, but a(||Afo]]) = 0, then Q* (¢, fo) = 0, for a.e.
t >0, by (4.2), hence f(t) = fo is a solution to Problem (1.1). Its uniqueness in the
class of solutions in D(A%) N X, is immediate because any other solution f*(t) €
D(A?) N X, must be a.e. constant: indeed, applying formula (3.5), and invoking
the positivity and monotonicity of a, we obtain 0 < a(||Af*(t)|]) < a(]|Afo]]) = 0.
This leads (again by (4.2)) to Q% (¢, f(t)) = 0 a.e.

Therefore, we can assume below that fo # 0 and a(||Afol|) # 0.

First we prove the existence part of the theorem.

Existence in case a). Step 1: Let fy € DY°. Then Lemmas 4.2, 4.3 and
Remark 4.3 apply, hence f,, (defined by (3.16)) satisfies (4.24). Then formula (3.1),
the monotone completeness of X, and the fact that A* is closed imply that there
is f(t) € D(A¥) such that A*f,(t) » A¥f(t) asn — oo, t > 0, k = 0,1,2.
Consequently, f(t) satisfies (3.7). Moreover, Remark 4.2 implies that A*f, k =
0,1,2, Q* (-, (), and AQ*(-, f(-)) are in L}, (R} ;X;). Then, one can apply the
Lebesgue’s dominated convergence theorem in (4.15) and (4.17). It follows that

F&) = fo+ / Q(s, £(s))ds

# [ e (s [ aesenir) ~atissi| aseas @20 @2
(i.e., f is a strong solution of Eq.(3.12)) and
0 <9(t) = [[Afoll = IAf @l —/0 Als, f(s))ds (¢ =0). (4.26)

Obviously, (4.25) implies that f € C(Ry; Xy). By (2.1), the operator A commutes
with the integral, when applied to (4.25). Consequently, Af € C(Ry; X).
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As it appears from formula (4.25), to prove that f is a strong solution of (1.1),
it is sufficient to show that ¢) = 0 (which means exactly (3.5)).

To this end we rewrite Eq. (4.25) conveniently, and apply A to the resulting
equation. We get

t
Af0+/ AQ* (s, f(s))ds = Af(2) /AQ ))ds+
0

+f t iAo —a (a7 + [ A(nf(ﬂ)dTﬂ Nf(s)ds.  (427)

On the other hand, as a is non-decreasing, formula (4.26) implies

a(IAfol) > a <||Af(t)|| N / A(s,f(S))dT> , (4.28)

thus all the integrands in (4.27) are positive. Then we can apply (1.2) and (2.2) as
in the proof of Lemma 2.2. We obtain

v = | t a2 o) —a (s + [ At o) | [A25 ) s (429

But the function a is the non-decreasing and convex (cf. (A;)). Then it is locally
Lipschitz, and, by (4.26) and (4.28), there is a number 0 < ¢ = ¢(||A fol|), depending
only on [|Afo||, such that

0 < a([[Afol]) = a (IIAf )l +/ A(r )dT> < (). (4.30)

As shown before, f(t) satisfies (3.7). Then introducing (4.30) in (4.29), we find

o< <e [ 0[] ds <er [vis)ds ©<e<T)

for each 7' > 0. Here, ¢y > 0 is a number depending only on 7" and fy.

Now the Gronwall inequality implies (¢) =0, 0 < t < T. As T is arbitrary, the
existence part of the proof of Theorem 3.1a) is thus concluded in the case fo € DS°.

Step 2: Let fo be as Theorem 3.1a), i.e., fo € D(A?)NX,. By Lemma 2.1b), we
can chose an increasing sequence { fo ;} C D3°, of initial conditions in Problem (1.1)
such that fo;  fo, as ¢ = oo. Then, according to Step 1, we obtain a sequence of
strong solutions {F;} of Eq. (1.1) with F;(0) = fo;, satisfying the properties of the
theorem. In particular,

|A?Fi(t)|| < exp [p(l|Asfoil)] || A% fo.il| (2> 0). (4.31)
In addition,
Fi(t) = fo, + /0 Q(s, Fi(s))ds. (4.32)
AFi(t) = Afoi + / t AQ(s, Fy(s))ds. (4.33)
0
and .
IAE ()] + / A(s, Fi(s))ds = |A fosl (4.34)

According to Step 1, each Fj is the limit of an increasing sequence {f, i(t)} .,

defined by (3.16) with f,, ;(0) = fo.;. It can be easily seen from the positivity of V*
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and from Lemma 4.1 that if fo; < fo; then f,;(¢t) < fn ;(¢) for all n and ¢ > 0.
This implies that the sequence {F;} is increasing.

Moreover, since ||A1foill < [[Arfoll, ||A%fo.i| < ||A%fo, and since p is non-
decreasing, it follows from inequality (4.31) that

|A2F:()| < exp(p(lAs foll)) [A2fo]| (2 > 0). (4.35)

Now a convergence argument, as in the beginning of Step 1, implies that there
is an element f € L} (R;;Xy), with the properties stated in Remark 4.2, such
that F;(t) ~ f(t) as i — oo, a.e. Consequently, we can apply, say, Lebesgue’s
convergence theorem in (4.32)-(4.34) to conclude the existence part of Theorem
3.1a).

Existence in case b). First notice that, in this case, Lemma 4.2 applies,
corresponding to the fulfillment of the conditions of Theorem 3.1b). Then, the
proof is as in Step 1 of case a).

Uniqueness. Remark that, applying the Lebesgue’s convergence theorem to
formula (3.16), we find that f is also a solution to Eq. (3.15). On the other hand,
if F is another positive solution of Eq. (1.1) with the regularity stated in Theorem
3.1, then F satisfies Eq. (3.12), hence is also a solution to (3.15). But, because of
the form of the iteration (3.16), it can be easily checked that f < F', for any other
positive solution F' of (3.15). Suppose now that such a solution F' € C(R}; Xy),
different from f, exists and verifies Eq. (3.5). Then

A+ / A(s, (s))ds = [Afoll = |AF ()] + / A(s,F(s))ds  (4.36)

However, f must differ from F' on a subset of Ry with nonzero Lebesgue measure,
where necessarily, f(t) < F(t). Therefore

[[Af(t ||+/A s))ds < ||AF(t ||+/AsF())d

on that subset, because A and ||-|| are strictly isotone mappings, and A is isotone.
This contradicts (4.36), hence the uniqueness part of the proof is concluded. O

Proof of Proposition 3.1. a) Let fo, {fo,i},{fni(t)},—,, and {Fj(t)} be as in
Step 2 of the proof of Theorem 3.1a). Then for each 4, the sequence {T f,,;(t)} 7,
is positive and increasing. Moreover, it is norm-bounded because

ITfni@OI < ITfoll - (22 0), (4.37)

as a consequence of Lemma 4.4a) and of the property I'fo; < T fo.

As X is monotone complete, it follows that {T f, ;(¢)} , is convergent for all 7.

Recall that T is closed, and f, i(t) / Fi(t) as n — oo, for all i. Consequently,
Fi(t) € D(T") and T'f,, ;(t) /" TF;(t) as n — oo, i = 1,2,.... In addition, |[T'F;|| <
[ITfoll, ¢ > 0,i = 1,2,.... Then, reasoning as before, we conclude that f(t) € D(T),
TF;(t) /~Tf(t) as i — oo, and that ||I'f|| satisfies (3.8).

b) The proof of (3.9) follows as in a), with the only remark that instead of (4.37),
we make use of the inequalities

ITfni @Il < exp(pr (141 fo.il)2) 1T fo,ill < exppr ([[Arfol)) [T foll (2> 0),

which are immediate by Lemma 4.4b), because pr is non-decreasing. O
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5. APPLICATIONS TO KINETIC EQUATIONS

Beside their intrinsic interest, the examples of this section illustrate how the
abstract results of Section 3 can be put to work in various particular situations.
The first example is a rather straightforward application of Theorem 3.1a), but
represents a new approach to the existence theory for the Smoluchowski coagula-
tion equation. The second example is an application of Corollary 3.1 to a space-
dependent kinetic model. The third example is an application of Theorem 3.1a),
which requires a more careful choice of the function a, and needs a more involved
verification of the monotonicity properties required in (A4;) and (As).

Finally we mention that Theorem 3.1b) is equally applicable to the first and the
third example, considered in this section. However, this does not bring any new
relevance to our analysis, so that will be not discussed here.

5.1. Smoluchowski’s coagulation equation. In this example, we reconsider the
existence and uniqueness of strong, global in time solutions to the Smoluchowski’s
coagulation equation introduced in [10], [11] (see also, e.g., [18], for a recent review),
to describe the irreversible evolution of particles that may coalesce into larger clus-
ters. Let f(t,y) > 0 denote the density of clusters of size y € R} at time ¢ > 0.
Then the i.v.p. for the continuous version of the Smoluchowski’s equation [11] reads

JF=QN=QIN - Q). SO =f20 (20, (1)

with
Q@) =3 [ 9190000 = 1)a00.) .. (52)
Q. (9)(y) = g(y) /OOO q(Y; y+) 9 (Y ) dy«, (5.3)

where the (coagulation) kernel ¢ : Ry x Ry — Ry is a symmetric, measurable
function.
We assume that there exist the constants gp,¢q1 > 0 and 0 < a < 3, such that

0, v) <o+ @ (v +9°y2)  (v,9. > 0), (5.4)

where
a+pf <1 (5.5)
Note that (5.4) includes the case when either ¢qo = 0 or ¢y = 0. However, we

suppose, without loss of generality, that ¢; > 0 (because the situation when ¢ is
bounded by a constant can be considered as a particularization of (5.4) to the case
where ¢; > 0 and a = 8 = 0).

For k > 0, let L} := L;(R4;dy) be the space of real measurable functions
g : Ry — R such that

lolly = [ 1+ 9" gl dy < oc.

+
Denote Ly , = {g € L; : g > 0}. The following property of the Smoluchowski’s
model is essential for our analysis. Suppose that the measurable functions g, :
Ry + R satisfy g, gy € Ly, Then

/OOO Y(y) [Q@F (9) () — Q- (9)(y)] dy = %/OOO /000 DY, y) 2y, y:)9(Y) 9 (y) dydys.,
(5.6)
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where
V() ==y +yx) = P(y) — P (ys). (5.7)
To obtain (5.6), simply apply the change of variables (v,v«) — (¥ — ¥«, y«) in the
first term of the L.h.s. of (5.6), and apply Fubini’s theorem.
In particular, if g € L%-i-ﬁ’ then taking ¥ (y) = y in identity (5.6), we get

/ Qc(9)(y)ydy = 0. (5.8)

This gives formally the mass conservation for Eq. (5.1).

Consider problem (5.1) in the space X = L'(R; ;dy). Here X = LY(Ry;dy) is
equipped with the usual norm ||| = ||||;:, and with the natural order <. In this
case, one can apply Theorem 3.1a) as follows:

Consider L} as a subset of X. Let i = 0, 1 and define the positive linear operators
Aci : D(Aci) € X = X by D(Acy) = L1, (Aeig)(y) = Xi()g(y), with Ni(y) ==
(1+y)", y >0 a.e., where 7o = 8 and y; = a + 3.

Next note that formulae (5.2) and (5.3) define QF and @, as positive and isotone
nonlinear operators in X with the common domain D, := L/lg.

It is immediate that QF, A.o, and A.; satisfy the domain conditions for Q*,
A, and A4, respectively, required by Theorem 3.1 a). In particular, the operators
Q% are o-closed, by the monotone convergence theorem. Obviously, A. o satisfies
the conditions of (Ag) for A.

Now we check that A.; (i = 0,1) and QF verify inequalities of the form (3.2)
and (3.4). Indeed, if g € L}, |, then starting from (5.6), we find

14eiQc (@) = [[Ac.iQZ (9)]]

=5 / / [(T+y)" + (A 4+y)" = (1 +y+u.)"]a(y, y-)9(y) g(y«)dydy. > 0,
0 0
(5.9)
because 0 < ; <1, and

A+y)+0+wy) . 1+27 '
>inf ———— =1 (0<~v<1 > 0). 5.10
Otvroy Y ara 0<~y<1, w9 20) (5.10)
Inequality (5.9) shows that g — A.(g9) = |[Ac,0Q7 (9)]] — [[Ac,0Q7 (9)|| defines a
positive isotone map A, : D(A.) = R with domain D(A.) = Ly, .
Starting again from (5.6), we find that if g € L} then

36,+7
1A20Q2 (9] = [[AZ.0Qc (9]

- 1/ i / Ty ) = 9% = (1492 0y, )99 () dydy..
0 0

(5.11)
If 0 < f < 1/2, applying again (5.10) in (5.11), we get

[A2,0Q% (9)]| - [|A%2.0Q< (9)]| <O, (5.12)

which is of the form (3.4) with p = 0.
On the other hand, if 1/2 < f < 1, then to estimate (5.11), we apply the
following form of Povzner’s algebraic inequality ([3])

A+y+y)" —1+y)* -1 +y) <20+9)°(1+5)" (y,9. >0), (5.13)
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which can be easily proved: Indeed (5.13) is equivalent to ((z) = 22° + 1 + 225 —
(1+2)% >0 for all z > 0. However, as ((z~') = 2725((z), to prove that {(z) > 0
for x > 0, we need only show that ((z) > 0 on (0, 1], which is immediate, because
1/2<B<1.

Thus, applying (5.13) in (5.11), we find that there is a number ¢ > 0 such that

”Ag 0Q+ || ||A3 0@, ( )” <cl|Acgl| ||A3709|| . (5.14)

Clearly, inequality (5.14) is of the form (3.4) with p(z) = cz.
Let a.(x) := agzx, for some constant ag > 0. If ag is sufficiently large, then the
map L}g’Jr 3 g ao||Aco9l| Acog — Q. (9) € X has the properties required in (A).
It appears that QF, A. o, Ac1 and a, verify the conditions of Theorem 3.1a) for
Q*, A, Ay and a, respectively, provided that ag is sufficiently large. Consequently,
one can apply Theorem 3.1a) to the i.v.p. (5.1). We obtain

Theorem 5.1. Let fo € Ly, in Problem (5.1). Then Eq. (5.1) has a unique
strong solution f such that f(t) € Lys ,, t > 0, and ||f(t)||L;ﬁ is locally bounded

on Ry . In addition f,(1+y)°f € C(Ry; LY (Rt dy)),

1Ol + / Ac(f@)ds = foll (¢ 0), (5.15)
and there is a constant ¢ > 0 such that
1£0)l, < explellfollps B 1follyy, (22 0). (5.16)

It should be emphasized here that Theorem 5.1 does not imply directly the mass
conservation, except for the case ¢ > 0, § = 1 and a = 0. In fact, if 0 < 28 < 1,
then the theorem allows for the existence of solutions with infinite initial mass (see
also [31]) i.e., fo € LQB 4. but fo & L.

However, 1f fo € L2B7+ N L1, then the solution f(¢) has finite mass. Indeed, let
I': L1 ¢ L' — L! be defined by (I'g)(y) = yg(y) a.e. on Ry. Clearly, T is of
type D on N2 1L,c 5.+ Then proposition 3. la) applies, so that f € L2B 4N L1, and
ITF@) < T ol

If L! is replaced by I}(R) = {c¢ = (¢;) : ¢; € R j = 1,2,.., |||,
Z;; J"|ej| < oo}, 7 > 0, then the above analysis remains valid, such that Theo-
rem 5.1 can be reformulated, with obvious modifications, for the discrete version of
the Smoluchowski equation [10]

-1
%ZQ] e ZQ] ) G(0)=ci0>0 (G=1,2,...), (5.17)
k=1
where Q; x(c) == q(k',])Cij, is defined by the same symmetric coagulation kernel
introduced before, subject to (5.4), (5.5). Here the component ¢;(t) > 0 of ¢(t) :=
(cj(t)) is interpreted as the concentration of clusters of size j at time ¢ > 0.
Existence and uniqueness of global in time solutions to the Smoluchowski equa-
tion are rather well understood, in the context of coagulation-fragmentation theory,
see, e.g., [18]-[32] (for more details, the interested reader is referred to [18], [31], and
[32]). Existence and/or uniqueness of different kind of solutions was proved in sev-
eral works, under various moment and regularity hypotheses. Thus, the results of
[19]-[28] are valid for more or less particular variants of ¢ given in (5.4). Moreover,

in [29], it is assumed that q(y,y.) < @(y)e(ys), with o(y) < k(1 +y)2, for some
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constant k > 0. Furthermore, paper [30] considered a coagulation kernel that blows
up for small values of y an y,. Finally, in [31], existence of solutions was proved
for ¢ continuous, with q(y,y«)/(yy«) — 0 as (y,y.) — oo, while local existence
and uniqueness of solutions was obtained under the condition ¢(y,y«) < @(y)p(y«),
with ¢(y) continuous and sublinear (i.e., o(py) < pe(y), y > 0, p > 1). The
uniqueness results of [31] also include cases of solutions with infinite mass. The
mass conservation in the context of the Smoluchowski equation has been recently
investigated in [28] and [33].

Theorem 5.1 seems to be complementary to the literature, and to bring some
unity into the existence theory for the strong solutions of Eqgs.(5.1)-(5.3) and (5.17),
under the general conditions (5.4) and (5.5).

5.2. Povzner-like model with dissipative collisions. We revise here the theory
of existence and uniqueness of global solutions for a space-dependent Boltzmann
model, [8] (see also [34]), with collision operators mollified in the spatial variable.
The model describes a rarefied mono-component fluid of particles of unit mass,
evolving in the free space with dissipative (conservative) binary collisions, i.e., col-
lisions resulting in the loss (conservation) of the kinetic energy of the encounters.

According to the model [8], the post-collision velocities v’, w' are related to the
pre-collision velocities v and w by

v=v-—>1-80){v-—w,nn, w =w+(1-p8mn)(v-—wnn, (518

where < -,- > is the inner product in R* and n € S? -the unit sphere in R®. Here,
B:S?+[0,1/2) is a given measurable function. The total momentum is conserved
in collisions, v/ + w' = v + w, but the kinetic energy is lost

V4w = v+ wl® = 28(n)(1 - ) [(v — w,m)[*,  (5.19)

excepting the case f = 0, when the collisions become elastic.
For each fixed n € S2, the transformation R* xR? 3 (v, w) — (v/,w') € R® x R3
is invertible. The inversion formulae are

1-— 1—
v=v-— (T%) (v—-w,n)n, wW=w-+ (%) (v —w,n)n.

Let X = L'(R® x R?*;dxdv) = L', equipped with the norm ||| := |-][;: and
the natural order <. Define by L} := L,(R® x R®;dxdv), k € R, the space of
measurable functions on g : R® x R® R satisfying

E
llgllz: :=/R (1+ [v|*) 2 |g(x, v)| dxdv < oc.
+

As before, Lj | denotes the positive cone in Lj.
Formulated in X, the i.v.p. for the above model reads

dr= AP+ QI - Qi) fO)=fo>0, (5.20)

where f = f(¢,x,v) is the one-particle distribution function, depending on time
t > 0, position x €R?, and velocity v €R?® of the so-called test particle, A is the
infinitesimal generator of the Co group {U'}, . of the free motion (U*f)(x,v) :=
f(x —tv,v), a.e. Further, jS' and @), are the so-called nonlinear gain and loss
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operators, respectively, and describe the influence of the collisions on the evolution
of f. They are formally defined by

Q; (9)(x,v)

= /OR dr /32xR3 W |(n,v — w)|" P(r,n)g(x,¥)g(x + rn, W)dn dw,

(5.21)
and
R
Q. (9)(x,v) = g(x,v)/0 dr /s2 ., |(n,v — w)|” P(r,n)g(x + rn,w)dn dw,
(5.22)

respectively, where P : Ry xS? — R, is a given measurable function with P(r,n) =
P(r,—n) assumed to satisfy

P(r,n) < cor? (r >0, neS?, (5.23)

for some constants ¢y > 0,0 <y < 1, and R > 0, specific to the collision processes.
Under the above assumptions, formulae (5.21) and (5.22) define Q7 as positive
and isotone operators on the common domain D := L}r‘ This follows easily if we
perform the change of variable (0,R] x S25 (r,n) = y := rn € {z €R® : |z] < R}
in (5.21) and (5.22), and then take into account (5.23).
The basic property of the model is the identity

[, o) (@i - Qs @)] av

1
=3 / (v, w,v',w') [(n,w = v)|" P(r,n)g(x,v)g(x + rn, w)dndvdw,
S2xXR3xR3

2
(5.24)

where ¢, g : R? = R are measurable functions such that ¢g € L}, and

'([)(V: w, vla W’) = 1/1(",) + 1/1(“”) - ’(/)(V) - 1/1(“’);
with v/ and w’ given by (5.18). We deduce easily (5.24), performing the change of
variable (v, w) — (0,®) in the first term of the 1.h.s (5.24).

If 3 = 0, then (5.20) yields a version of the so-called generalized Boltzmann
equation with binary elastic (conservative) collisions, analyzed in [9].

Let the positive linear operator Ay : L} — X be defined by (Ayg)(x,v) =
AMv)g(x,v) a.e. on R® x R, with A(v) := (1 + |v|*). Define aq(z) := cox for some
constant ¢g > 0. If ¢g is sufficiently large, then a4, Ay and Q;t verify the conditions
of Corollary 3.1 for a, A = A; and Q¥ respectively.

Indeed, the operators int are p-saturated. Moreover, they are o-closed, by the
monotone convergence theorem. It is immediate that the domain conditions im-
posed in Sections 1, 3 and in Corollary 3.1 are satisfied. Further, applying (5.19)
in (5.24), we obtain an inequality of the form (3.2), i.e., if g € L} , , then

0 < Adlg) = [|AaQy (9)]| — [|Aa@ (9)]]

R
= / dr/ m(r,n,v,w,x)g(x,v)g(x + rn, w)dndvdwdx,
0 S2xR3xR3xR3

where 7(r,n, v, w,x) := S(n)(1 — S(n)) |{n,v — w)|**” P(r,n). Remark here that
themap L} ; 3 g = Ay(g) € Ris positive and isotone. Moreover, for ¢ sufficiently



22 C. P. GRUNFELD

large, the map Ly , 3 g — o [[Aagll Aag — Q (9) € X is also positive and isotone.
Further, to obtain an inequality of the form (3.4), note that (5.19) gives A\(v')? +
AW < @+ VWP < @+ VP + W22 = AW)? + A(w)? + 22(V)A(w),
which can be applied in (5.24) to conclude easily that there are two constants ¢y,
¢ > 0 such that

[A5QE (@] - [[A2Qq4 (9]
R
< cl/ dr/ P2AWV)ANW) 2 g(x, v)g(x + rn, w)dndvdwdx
0 S2xR3xXR3xR3

< cl|Aagll[|AZg]]
for all g € Lg , . Finally, it is obvious that the group U* (generated by A) commutes
with the semigroup V! (generated by A4), and A*QT(U'g) € L}, .(R;; X) for all
gEN LY k=1,2,....
Therefore, by Corollary 3.1, we have the following result:

Theorem 5.2. Let fo € Ly , in Problem (5.20). Then Eq. (5.20) has a unique
positive mild solution f such that f(t) € Ly, t >0, and ||f(t)||L31 is locally bounded
on R, . In addition, f, (1+ |v|*)f € C(Ry; L),

t
£l + [ Aalfe)ds = 1lfllyy (020, (5.25)

and there is a constant ¢ > 0 such that
1FOz; < explellfolly ) follz (> 0). (5.26)

It is not difficult to see that the argument of Theorem 5.2 can be repeated
with obvious modifications to provide a similar result for the space-homogeneous
version of Eqs. (5.20)-(5.22), which coincides with the force-free, three-dimensional
space-homogeneous Boltzmann model for granular flows [13], [14].

Theorem 5.2 improves a result announced in [8], where the existence of solutions
was stated for initial data in L}, and property (5.25) was included among the
conditions for uniqueness of the solution.

5.3. Boltzmann model with inelastic collisions and chemical reactions.
In this final example, we reconsider the existence theory of solutions for an ab-
stract system of a Boltzmann-like phenomenological equations, [6], [35], [36], which
describe a multi-component reacting gas of particles with internal states, char-
acterized by discrete values of the internal energy. Motivated by the fact that
a real gas mixture of particles with internal structure can be thought as a mix-
ture of several chemical species of mass points with unique internal state, any
gas particle of the model is supposed to posses one internal state. Specifically,
the model refers to a gas consisting of N chemical species. A particle of species
n = 1,2,...,N is characterized by its mass m, > 0 and internal energy E,.
Without loss of generality, one can assume that E, > 0, 1 < n < N. It is
assumed that the chemical reactions are induced by inelastic (possibly) multi-
body, instant collisions. A reaction is identified with a couple (a,3) € M x M,
where M = {v= (Vn)i<n<n | T €{0,1,..., K}} is a multi-index set. Here
a=(a,...,any) € Mand 8= (b1,...,8n) € M designate the pre-collision and
post-collision channels, respectively, with 0 < a,, 8, < K participants of species n;
1 < n < N. Any couple of the form (v,7) € M x M is identified with a multi-body
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elastic collision with -, collision partners of species n; 1 < n < N. The number of
particles in some channel v € M is |v| := Zf;l v;. The family of chemical species
participating in channel v is denoted by N (v) :={i:9; > 0,1 <i < N}.

Let M,, V,(w) and W,(w) denote the total mass, velocity of the mass center
and total energy, respectively, for the particles in channel 7, i.e.,

N
M, = Z’yimi, (5.27)
i=1

V., (w):= Mi Z i:miwm, (5.28)

v ieN(w) j=1

= > 22 'mwi, + E;), (5.29)

1EN (v) j=
where W = ((Wk.i)ic{1,....an} JkeN () TeDresents the ensemble of velocities of the
particles in channel 7. Then, the kinetic energy of the particles (with velocities w)
in channel ~, relative to the frame of the mass center, reads

W (w) = W, (w) — 22 V Z% i (5.30)

3

Obviously, W, ,(w) > 0.
According to the model, a gas reaction («a, ) may take place only if it is consis-
tent with the conservation of mass, momentum and energy, i.e.,
Mo = Mgs, Va(w)=Vz(u), Wa(w)=Ws(u). (5.31)
We will assume here that elastic collisions are always present in the gas evolution.
Therefore, the set Cpr := {(a, f) € M x M : M, = Mg} is nonempty.
The Boltzmann-like system of equations for the above model is

SRE=QIN-QI) (20, 1<i<N). (532)

Here the unknown f; : R, x R® ~ Ry is the one particle distribution functions
fi = fi(t,v) (t-time, v-velocity) of the particles of species 1 < i < N. In Eq.
(5.32), Qf (f) and Q; (f), with f := (f1,...,fn), are the so-called loss and gain
(nonlinear) operators for the particles of species 4, respectively. Formally,

Z ; / [p57a(w, n)(g® o ug o) (W, n)]wi oy dw;dn,
a,fEM ,

i

R3|a|—3XQB

> a / [rs.a(W,n)g*(W)],,, _, dWidn, (5.34)
GBEM  pajalaxq,

where .
gw) = [I TTewip. veMm, (5.35)
iEN(7) J=1
Q, is the unit sphere in R*/71=3 with v € M, and dW; is the Euclidean element of
area on {w €R®®l | w; ., = v}. Here, the functions ug, € C(R*®l x Qg; R3IAI),
and the measurable functions 3.4, ps.a : R°I%l x Qg+ Ry are given.
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The following conditions are assumed ([6], [36], [37]):
(B1) 8,0 = P3,a = O unless: |a] > 2, |8 > 2, (a,f) € Cpr, and w € D+7a =

N
w' € ]R3\Ot| : W,-’,X(WI) + Z(al - ﬁl)EZ Z 0}
i=1

1=

(Bs) For each i € N(a) fixed, pg.o(W,n), 73 (W, n), and ug o(w) are invariant
with respect to the interchange of the components w; 1, ..., w; o, of w.
(B3) If (o, 8) € Cpp, W € D;a, then
(Vaougy)(w,n) =Vy(w), (Wgoug,)(w,n) =W,(w), (5.36)
for all n € (g, and

/ D5 (W, 1)p(W, 1) (3 0 1p,0) (W, n)dwdn
R3laIx Qg

= / Ta,8(W,n)(p o u, g)(w,n)(w, n)dwdn, (5.37)
R3IBIxQ,

for all ¢ : R3lel s R and ¢ : R3!8l — R, for which the integrals are well defined.

We suppose that the reactions are reversible, i.e., if rg o # 0 for some (o, ),
then also 74,3 # 0.

It follows from (5.37) that pg . and rg . are related one to another. Indeed, a
more explicit relationship between pg , and 73, can be derived, as it results from
a general example constructed in [36], [37], but this is beyond our present scope.
Here we only mention that Eq. (5.32) reduces to the classical Boltzmann equation,
when one assumes a mono-component gas of particles with binary elastic collisions
(ie, N=1, K =2, and pg o =738, =0 unless a = g = (1,1)).

The last condition of the model concerns the behaviour of rg o (see [6]):

Assumption 5.1. There are some constants 0 < g <1 and ¢, > 0 such that
Vg,o(W) := / 7.0 (W,n)dn < ¢,(14+W,o(w))? (we R ae). (5.38)
Qs

for all a, B € M.

Obviously, vg,o(W) = 0, unless («

aﬂ) € CM
A consequence of (By), (Bs2) and (5.3

.38) is the key equality

N
> [ Wmerom-e @wle=0 0<i<y. (39
i1
for all g = (g1, ..., gn) with (1+ | v [*)1+4g; € LY (R3;dv), i = 1,2, ..., N. Here,
1 .
\IIEO) (V) :=my, 11154) (v):= M |v|2 + E;, \I»'E]) (v) :==myv; (1<i<N),

where v; is the j-component, j = 1,2,3, of v. Equality (5.39) implies, at lest
formally, the bulk conservation of mass, momentum and total energy.

Let X := (L'(R3;dv))"N be equipped with the order < induced by the order of
the components (i.e., the natural order of L'). The norm on X is defined as

N N
ol =Y [ lo:t)ldv =3 gl (5.40)

=155
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Denote by L; := Lj(R?;dv), k € R, the space of measurable functions g : R* xR® —
R satisfying
lolly o= [ (1 V) o)l dv < oo
R4
and let Ly , be the positive cone in Lj.

It is natural to formulate the i.v.p. for Eq. (5.32) in the space X. Under the
above conditions, formulae (5.33) and (5.34) define Q@ and Q;, 1 < i < N, as
operators from the common domain D = (L)Y C X to L'(R®;dv). Defining the
operators Q% :DC X~ X by Q§ = (Qli, ..... ,Qﬁ), we can write the i.v.p. for
Eq. (5.32) in X as

T r= Qb -Qa). SO =fo=Uormfor) € Xae (541

We shall prove the existence of solutions to Problem (5.41), by applying Theorem
3.1a) (in the case A = Ay). To this end, let the positive closed linear operator
Ap : (L})N = X be defined on components by (Agg):(v) = A\i(v)g(v) a.e. on
R? x R, where \;(v) := m; + m;|v]>/2+ E;, 1 < i < N. Denote I,(w) :=
YieN () > it Ai(wij); v € M. Then clearly, I, (w) = M, + W, (w), hence
0 < Wy(w) < ly(w). (5.42)
In addition, defining \"(W) := [T;c () [T/, Xi(wig), v € M, we have
L(w) < [ BN (w), (5.43)
)

where E := min{m; + E; : 1 <4 < N}. It is useful to remark that, since W, (w) >
E|~v|>0,and 0 <q <1, then by (5.38), (5.42) and (5.43),

vg.a(w) <OX (W) (we R qe), (5.44)

for all a, 8 € M. Here C = C(E,K) > 0 is a number depending on E and K
(recall that K is the maximum number of partners in a reaction channel).

To apply Theorem 3.1a) to (5.41), first remark that Q% and A g verify the domain
conditions imposed to Q* and A by the theorem. Moreover, Ap has the properties
required for A in (Ag). Further, observe that formula (5.39) provides correspondent
to (3.2), specifically,

Ap(g) = [ABQB(9)| — [[AsQE (@) =0 (g€ (Li)™).
To obtain a correspondent to (3.4), define s, (w) = 3=,c () 20751 Xi(wij)*

Next, using the definition of QE and property (Bz), and applying the obvious
inequality sq(w) < lo(W)?, we find that if g € (L§ )", then

||A2BQ§(9) || = Z Sa(w)pﬁ,a(wa n) (gﬁ o uﬁ,a)(wa n)dwdn
@BEMgaai v,
< X / la(W)*pg.a(W,m)(g” 0 ug o) (W, n)dwdn.
@BEMpsial v
5

We apply property (5.37) in the last integral. Then interchanging « and 3, we get

||A2BQ§(g)|| < Z (lgo ug’a)2(w,n)rﬁ’a(w,n)go‘(w)dwdn. (5.45)

a,BGMRgM xQp
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Since lg(w) = Mg + Ws(w), property (Bs) implies that (Ig o ug,q)(w,n) = lo (W)
for all (a,8) € Cpr, W € D+’a. This and (Bj) enable us to deduce from (5.45) that

[ARQ5 ()] < > la(W)?75.0(W,n) g% (W)dwdn. (5.46)

O‘"BEMRNQI xQp

Now, using the definitions of l,(w) and ()5, and then, taking advantage of (5.38)
and (5.42), we obtain from (5.46)

ABQE@I < > sa(W)rs,a (W, n)g%(wW)dwdn + p5(||Asgl) [ Ay]|

a,BGMRgM xQp

= |1A%Q5(9)| + pa(l(Asgll) || A% 9] .

where pp is a positive non-decreasing (polynomial) function.

Therefore, the last inequality is the required correspondent to (3.4) (in the case
A=Ay).

Further, let ap > 0 be some constant, and define a(x) = aqg Z;\g x?, z > 0.
Therefore, a(||Apgl]) = ao Zﬁg [Agg||”. But, each term |[Agg||” in the r.h.s of
the last equality can be expressed by (5.40), and the resulting expression can be
expanded by the multinomial formula. Then, after some elementary algebra we get
the following useful expression

alllAsgl) =a0 > ey [ XN(w)g"(w)dw, (5.47)
YEM, |v|>1 R3hI

where ¢, ; > 0 are strictly positive, constant coefficients, vy € M, |y| > 1,1 <i < N.
We show that if ao is sufficiently large, then (L} )N 5 g — a(||ABf|)ABg —
Q5(g) € X is positive and isotone. To this end, first note that one can write

Q7 (9)(v) = Ri(9)(v) gi(v), (9 € (Ly )Y, v ER ae., 1 <P <N),

where
Rigv) = 3 a / voaw) I T[9s(wes) d¥;, (5.48)
a,BeEM  pajal-3 sEN(a) J=1
(5.0) £ (bexs) N

with v, as in (5.38). Hence,

a([|ABgl)(Arg)i(v) = Q; (9)(v) = la([[ABgl)Ai(v) — Ri(9) (V)] gi(v).  (5:49)

It is convenient to set

R =C T / ew)  TT T oswes) dwi, (5.50)
a,BeEM a3 sEN(a) J=1
(8,5)#(4,i) Wi o; =V
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with C as in (5.44). Summing on § in (5.50), using the explicit form of A*(w), and
invoking property (B;), we are easily led to

RA Y@ =ONG) S an [ N(w)gl(w)dw,

YEM, |y]>1 R31I

where ¢.,; > 0 are constant coefficients, vy € M, |y| >1,1<i < N.
We introduce (5.47) and (5.50) in (5.49). Consequently, for v € R? a.e.,

a(l[ABgl)(AB9)i(v) = Q; (9)(v) = [R{(9)(v) — Ri(9) (V)g(v) + Ti(9)(v), (5.51)

where

Tg)(v) = M(Wgiv) S (aoes — Cay) / X (w)g" (w)dw.

YEM, |v[>1 R3II

Now we compare (5.48) and (5.50), by taking advantage of (5.44). It follows that
the map (L3 )N 3 g = [R{(9) — Ri(9)]g: € L" is positive and isotone, 1 < i < N.
Moreover, because of the form of T;(g), if ap > 0 is sufficiently large, then the
mapping (L3 )Y 3 g = Ti(9)(v) € L' is positive and isotone for all i. In this case,
by virtue of (5.51), the map (L} ;) 3 g — a(|[Apgll)ABg — Q5(g) € X is also
positive and isotone.

In conclusion, the conditions of Theorem 3.1a) are fulfilled (in the case A = Ay),
so that we are in position to state an improved version of a result announced in [6].

Theorem 5.3. Suppose that in Problem (5.41), fo: € L}LJF, 1<¢< N. Then
Eq. (5.41) has a unique strong solution f(t) = (f1,..., fx) such that f;(t) € Ly,
t > 0, and ||fl(t)||L}1 is locally bounded on Ry, 1 < i < N. In addition, f;,

1+ v[)fi € C(Ry;LY), 1<i <N,
[ABf(@)]| = [ABfoll (¢t >0), (5.52)

and there is a non-decreasing function pp : Ry — Ry such that

[ABF @] < exp(ps(llfol)t) [[ABfol| (¢ > 0). (5.53)

Observe that Theorem 5.3 does not state the conservation of mass, momentum
and energy, but the conservation (in arbitrary units) of the quantity mass+(total)
energy. However, the properties of f(¢), cf. Theorem 5.3, allow for checking imme-
diately the separate conservation for each of the above quantities.

Theorem 5.3 was first obtained in [6], under a more restrictive formulation than
here. The proof of [6] is more complicated than here, because involves an operator
approximation step, as mentioned in Section 1, in the case of Arkeryd’s scheme [1].

Here it should be noticed that if Problem (5.41) is particularized to the case of
the classical Boltzmann equation, then Theorem 5.3 reduces to the main mono-
tonicity result of [1]. Moreover, in that case, using suitable additional Povzner-like
estimations, we can re-obtain the general moment estimations of [1], as application
of Proposition 3.1b).

Finally we remark that similar analyses as for Theorems 5.2 and 5.3 can be
developed for the models considered in [5] and [8].
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