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Abstract. We study the family of Hamiltonians which corresponds to the

adjacency operators on a percolation graph. We characterise the set of ener-
gies which are almost surely eigenvalues with finitely supported eigenfunctions.

This set of energies is a dense subset of the algebraic integers. The integrated

density of states has discontinuities precisely at this set of energies. We show
that the convergence of the integrated densities of states of finite box Hamilto-

nians to the one on the whole space holds even at the points of discontinuity.

For this we use an equicontinuity-from-the-right argument. The same state-
ments hold for the restriction of the Hamiltonian to the infinite cluster. In this

case we prove that the integrated density of states can be constructed using

local data only. Finally we study some mixed Anderson-Quantum percolation
models and establish results in the spirit of Wegner, and Delyon and Souillard.

1. Introduction: The Quantum percolation model (QPM)

The present paper is devoted to the spectral analysis of the percolation Hamilton-
ian. It is the family of adjacency operators associated to realisations of percolation
sub-graphs of the d-dimensional lattice. For simplicity we restrict ourselves in the
present paper to site percolation, although most of the results are valid also for
bond percolation. This will be discussed elsewhere in more detail.

Unlike other random lattice Hamiltonians, the quantum percolation model has
finitely supported eigenstates. Indeed, this property was the first cause of interest
in the model, cf. [dGLM59b]. Another feature, which sets the quantum percolation
model apart from other random Hamiltonians, is the existence of a large set of
discontinuity points of its integrated density of states (IDS). Nevertheless, we are
able to prove the convergence of the finite volume approximants to the IDS at all
energies.

In the mathematical physics literature the continuity of the integrated density
of states has been proven for several types of random Schrödinger operators. The
considered models act as differential operators on L2(Rd) or as difference operators
on `2(Zd). On the other hand, for some models, like the Bernoulli-alloy type model,
the continuity is still an open question. By means of contrast, the QPM may provide
understanding what the relevant mechanisms are which cause the continuity. In the
literature on equivariant manifolds and graphs and of geometric L2-invariants the
analogue of the IDS is studied, too. It has been noticed that its discontinuities con-
tain geometric information of the underlying space, see [Lüc02] and the references
cited there. The discontinuities of the IDS of certain different random Hamiltonians
have been recently studied in [KLS03] and [KS04]. The first paper is devoted to
tiling Hamiltonians and the second to the random necklace model.

The QPM was introduced by de Gennes, Lafore, and Millot in 1959 [dGLM59b,
dGLM59a]. There it was considered as the Hamiltonian of a binary solid solution.
De Gennes et al. showed that the spectrum of the percolation Hamiltonian is pure
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point if the fraction p of active sites is below a critical value pc. Indeed, this value is
the well known critical probability of percolation theory: If p < pc no infinite active
cluster exists almost surely, and for p > pc it almost surely does. If the concentration
of active sites is above the critical value one speaks of the percolating regime. For
this regime de Gennes et al. argued that the spectrum contains a continuous part.
This statement was not verified by rigorous methods. Its proof would provide an
example of Anderson de-localisation, see the paragraph below for more details. In
[KE72] Kirkpatrick and Eggarter observed that there exist eigenfunctions of the
adjacency operator whose support is finite and contained in the infinite percolation
cluster. Obviously this statement is only interesting in the percolating regime. It is
easy to find such eigenfunctions corresponding to the eigenvalue zero (the midpoint
of the spectrum). To show the existence of non-zero eigenvalues Kirkpatrick and
Eggarter constructed examples with an axis of symmetry. Their idea resembles the
“mirror charges” construction in electro statics.

In [CCF+86] Chayes, Chayes, Franz, Sethna, and Trugman refined the mirror
charge idea. They presented arguments that the eigenvalues of finitely supported
states form a dense set in the spectrum, and that the IDS is discontinuous at these
energies. We give a complete mathematical proof of these facts and moreover show
that any energy occurring in the spectrum of the adjacency operator of a finite
cluster also occurs with positive probability as an eigenvalue (with finitely supported
state) on the infinite cluster. Furthermore, we show that the set of these energies
coincides with the set of discontinuities of the IDS. Actually, the argument showing
the equality of these two sets of energies is by no means restricted to percolation
Hamiltonians, but applies to much more general random operators on graphs. This
will be discussed elsewhere.

Anderson localisation and delocalisation go beyond the scope of this paper. Nev-
ertheless, for completeness sake we briefly discuss these topics and give references
to the physics literature where they were studied numerically for the QPM. In the
fifties Anderson [And58] argued on physical grounds that certain lattice Hamilto-
nians describing the motion of a single electron in a disordered environment should
exhibit pure point spectrum. (The model he studied is the same as Hω defined in §2,
with the assumption that the random variables qk, k ∈ Zd are uniformly distributed
on a finite interval.) Later it has been proved rigorously that the spectrum of Ander-
sons’s model near its boundaries consists of a dense set of eigenvalues and that the
continuous spectral component is absent, see the expositions in [CL90, PF92, Sto01].
Moreover, all the corresponding eigenfunctions decay exponentially. This phenom-
enon is called Anderson localisation. The exponential decay rate is characterised
by the so called Lyapunov exponent, or its inverse, the localisation length. It is
conjectured, but not proven that in a certain energy/disorder regime the Anderson
model should exhibit delocalisation, i.e. purely continuous spectrum.

Physical intuition suggests that the QPM should also exhibit Anderson localisa-
tion in energy regions near spectral boundaries. If this holds, it is a priori not clear
whether the exponentially localised eigenfunctions could induce a discontinuity of
the IDS. We show that this is not the case.

A series of papers is devoted to the numerical analysis of Anderson localisation
for the QPM, e.g [SAH82, KB97, KB98b, KB98a, KB02]. These studies include a
discussion of the similarities and differences of localisation occurring in quantum
percolation and Anderson models. In particular the numerical analysis done in
[KB02] indicates that the localisation length for two dimensional systems and ener-
gies in the middle of the band behaves differently for the Anderson model and for
the QPM. In the later case there is a well defined localisation length (independent
of the distance from the localisation centre), supporting the picture that the eigen-
states decay exponentially. On the other hand, if one tries to define a localisation
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length for the Anderson model, it turns out that this quantity grows logarithmically
as a function of the distance from the localisation centre. This indicates that the
eigenfunction decay is slower than exponential. In [SAH82] quantum percolation in
the percolating regime p > pc is studied. Indications are found that in dimensions
greater than two extended states (i.e. continuous spectrum) emerge for p > pq,
where pq is a threshold probability strictly larger than pc.

The proofs in the present paper draw on ideas both from the random Schrödinger
operator and the L2-invariants literature. For instance, Delyon and Souillard in
[DS84] used the unique continuation property to prove the continuity of the IDS of
the Anderson model. In [CS83] Craig and Simon obtained a better result, namely
the log-Hölder continuity of the IDS. While the techniques of these two papers are
not applicable in the present context, the unique continuation property and the
log-Hölder continuity do play a prominent role. Their relevance has been realised
in the geometry literature too, see e.g. the papers of Lück [Lüc94], Farber [Far98]
and Dodziuk, Mathai and Yates [DMY, MY02]. They are devoted to equivariant
operators on graphs and manifolds. In particular, these operators are non-random.
While these papers show that the discontinuities of the IDS have to be a subset
of a certain algebraic set, they do not prove the existence of discontinuities and a
characterisation of this set. In the present setting the ideas developed in papers
on the theory of disordered systems and on the theory of geometric invariants turn
out to be complementary: while the former ones are used to prove the existence
of discontinuities and characterise their set, the latter ones allow one to prove the
convergence of the approximations of the IDS even at energis where the IDS jumps.

In this paper we study Hamiltonians corresponding to site percolation on the
lattice Zd and on general graphs with an amenable group action. For clarity sake
we separate the discussion and focus first on Zd and later on analyse the more
general case of graphs. The types of Hamiltonians we consider are somewhat more
general than the QPM and contain the Anderson model as special case as well. Our
results apply also to the case where the probability space degenerates to a point,
i.e. when the considered operator is invariant under a group action.

Here ist the outline of the paper: The following section contains precise definitions
and statements of the results in the case where the the Hamiltonian is defined on
Zd. In particular, we define the IDS by an exhaustion procedure and analyse its
continuity properties. Subsequently we discuss in § 3 which of the results hold on
more general graphs and for correlated random potentials. The proofs in the later
sections are given for this more general situation. In Section 4 we give an alternative,
local definition of the IDS on the infinite cluster. It is followed by a section discussing
the unique continuation property and characterising the discontinuities of the IDS.
Section 6 proves the log-Hölder continuity of the IDS at all algebraic numbers,
and deduces the convergence of the finite volume approximations at all energies.
Section 7 proves the local Lipschitz continuity of the IDS under local continuity
requirements on the potential values. There one can find also a generalisation of an
argument of Delyon and Suillard [DS84].

Acknowledgements. It is a pleasure to thank J. Dodziuk, D. Katz, W. Kirsch,
and D. Lenz for stimulating discussions and comments; the Deutsche Forschungsge-
meinschaft for support through grants Ve 253/1-1 and /2-1; the anonymous referees
for clarifying remarks; and B. Simon for hospitality at CalTech.

2. Results

Let us first define the model we are studying. In the present section we will
restrict ourselves to Hamiltonians corresponding to independent, identically dis-
tributed (iid) percolation on Zd. Consider a collection of iid random variables
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qk : Ω → [0,∞] indexed by k ∈ Zd. Here Ω is a probability space with probability
measure P and expectation E. Denote by µ be the Borel probability measure cor-
responding to the distribution of the random variable q0. Then P = ⊗Zdµ. To each
ω ∈ Ω corresponds a function q•(ω) : Zd → [0,∞] which is called a realisation or
configuration. It defines the subset X(ω) := {k | qk(ω) < ∞}. Sometimes we will
call ω ∈ Ω itself a configuration. The vertices in X(ω) are called active or open and
the ones outside X(ω) closed. To avoid trivialities, suppose p := P{q0(ω) <∞} > 0.
We could also allow that the random variables take on negative values, if we impose
an appropriate moment condition.

A finite hopping range operator H0 on Zd is a bounded, linear map H0 : `2(Zd) →
`2(Zd) such that there exists R ∈ N with

(i) H0(k, j) = H0(j, k) ∈ R,
(ii) H0(k + l, j + l) = H0(k, j) for all l ∈ Zd and
(iii) H0(k, j) = 0 if ‖k − j‖1 ≥ R

for all k, j ∈ Zd. Here H0(k, j) := 〈δk,H0δj〉 and δk ∈ `2(Zd) is the function taking
the value 1 at k and 0 elsewhere. It follows that there exists a constant C with
|H0(k, j)| ≤ C for all k, j ∈ Zd. The smallest R ∈ N for which (iii) holds is the
finite hopping range of H0. The most important example for H0 is the adjacency
operator : H0(k, j) = 1 if ‖k − j‖1 = 1, and 0 otherwise.

We think of H0 as the kinetic energy of a Hamiltonian. The potential energy is
given by the multiplication operator by q(ω) and the full random Hamiltonian Hω is
the sum of the two energies. More precisely, for an ω ∈ Ω, define D(Hω) := `2(X(ω))
and

(Hωf)(k) := qk(ω)f(k) +
∑

j∈X(ω)

H(k, j)f(j) for all f ∈ D(Hω)

Thus qk(ω) = ∞ implies that functions in the operator domain D(Hω) vanish at k.
This is consistent with thinking that the potential value at k is infinitely high.

For a subset G ⊂ Zd, an ω ∈ Ω and a random Hamiltonian Hω denote by HG
ω the

restriction of Hω to `2(G), in other words HG
ω (k, j) = Hω(k, j) if k, j ∈ G. For finite

G, the spectrum of HG
ω consists of eigenvalues E1(HG

ω ) ≤ E2(HG
ω ) ≤ . . . , which we

enumerate in increasing order including multiplicities. The normalized eigenvalue
counting function of HG

ω is defined as

N(HG
ω , E) :=

|{i ∈ N | Ei(HG
ω ) < E}|

|G|
.

We will be in particular interested in the case where G is a box ΛL = [−L,L]d. For
a finite range hopping operator H0, a box ΛL and a random configuration ω ∈ Ω we
use for brevity sake the following notation: HL

ω := HΛL
ω and NL

ω (E) := N(HL
ω , E).

Now we introduce the notion of H0-connectedness induced by a finite hopping
range operatorH0. Two vertices k, j ∈ Zd areH0-nearest-neighbours ifH0(k, j) 6= 0.
In this case we write H0-dist(k, j) = 1. A H0-path (of length n) in G ⊂ Zd is a
sequence of vertices k0, k1, . . . , kn ∈ G such that (k0, k1), . . . (kn−1, kn) are pairs of
H0-nearest neighbours. This induces the notion of H0-path connected components.
The length of the shortest H0-path joining k and j is denoted by H0-dist(k, j). If we
write simply dist(k, j) we mean the distance function associated to the adjacency
operator. For fixed H0 and ω ∈ Ω we denote by X∞(ω) the union of the infinite
H0-components of X(ω), and ΛL ∩X∞(ω) by Λ∞L (ω). The restriction of a random
Hamiltonian Hω to Λ∞L (ω) and the associated finite volume IDS are denoted by
H∞,L

ω and N∞,L
ω , respectively. Similarly, H∞

ω is the restriction of Hω to X∞(ω).
Denote by σdisc, σess, σac, σsc, σpp the discrete, essential, absolutely continuous,

singular continuous, and pure point part of the spectrum, and by σfin the set of
eigenvalues which posses an eigenfunction with finite support. Denote by Pω(I) the
spectral projection onto on interval I associated to the operator Hω.
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Theorem 2.1. There exists an Ω′ ⊂ Ω of full measure and subsets of the real
numbers Σ and Σ•, where • ∈ {disc, ess, ac, sc, pp, fin}, such that for all ω ∈ Ω′

σ(Hω) = Σ and σ•(Hω) = Σ•

for any • = disc, ess, ac, sc, pp, fin. Moreover, Σdisc = ∅. There exist a distribution
function N called integrated density of states such that for all ω ∈ Ω′

(1) lim
L→∞

NL
ω (E) = N(E)

at all continuity points of N . The following trace formula holds for the IDS
(2)
N(E) = E {〈δ0, Pω(]−∞, E[)δ0〉} = |ΛL|−1E {Tr[χΛL

Pω(]−∞, E[)]} ∀L ∈ N.
The almost-sure spectrum Σ coincides with the set of points of increase of the IDS

(3) Σ = {E ∈ R | N(E + ε) > N(E − ε) for all ε > 0}.
Analogous statements hold for H∞

ω . The corresponding quantities are denoted by
N∞,L

ω , N∞,Σ∞ and Σ∞
• , where • = disc, ess, ac, sc, pp, fin.

This is a special case of Theorem 3.1. Similar results for the Dirichlet and
Neumann Laplacians on the active clusters on Zd corresponding to bond percolation
have been obtained in [KM].

Note that the trace formula (2) holds for any L ∈ N. This feature is very useful
when studying properties which depend on a finite part of the configuration ω, but
if the size of this finite part is not know a priori.

The definition of N∞ is in some sense unsatisfactory, since N∞,L
ω depends on

events which happen infinitely far away from the box Λ = ΛL. However, it can be
shown thatN∞ can be defined by an approximating sequence with better properties.
Denote by ∂i

lΛ = {k ∈ Λ | dist(k,Λc) ≤ l} the inner l-boundary of Λ and similarly
by ∂o

l Λ its outer l-boundary. Here Λc denotes the complement of the set Λ. Let
Λcon(ω) be the set of vertices in Λ(ω) which are connected by a H0-path in X(ω)
to ∂o

RΛ. Now Λcon(ω) depends only on the random variables with index in Λ and
its outer R-boundary. Denote by Hcon,L

ω the restriction of Hω to Λcon
L (ω) and by

N con,L
ω (E) the corresponding normalised eigenvalue counting function.

Proposition 2.2. For almost all ω, limL→∞N con,L
ω (E) = N∞(E) holds at all

continuity points E of N∞.

Remark (Maximum of N∞). The maximal value of the IDS N∞ is an information
which can be obtained using the same ideas as for the proof of Proposition 2.2. For
the adjacency operator on X(ω), we have limE→∞N(E) = E{Tr[χ{0}∩X(ω)]} = p.
For the operator on X∞(ω)

lim
E→∞

N∞(E) = E{Tr[χ{0}∩X∞(ω)]} = G(∞) := density of the infinite cluster.

In the case of N∞ this answers a question posed in the Remark on p. L1175 in
[CCF+86].

Let ν, ν∞ be the measures associated with the distribution functions N and
N∞, respectively. Then equation (3) can be stated as supp ν = Σ, respectively
supp ν∞ = Σ∞. In a similar way the supports supp νpp and supp ν∞pp of the pure
point part of ν, respectively ν∞, can be characterised. Set

Σ̃ :={E ∈ R | ∃ finite G ⊂ Zd and f ∈ `2(G) such that HGf = Ef}.(4)

Theorem 2.3. (i) Σfin = supp νpp.
(ii) If q0 is a non-trivial random variable which takes only the values 0 and ∞,

we have Σfin = Σ̃.
(iii) If an infinite H0-cluster exists almost surely we have Σ∞

fin = supp ν∞pp.
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(iv) If, moreover, H0 is the adjacency operator, then Σ∞
fin = Σfin.

Statement (i) of Theorem 2.3 is by no means restricted to percolation Hamiltoni-
ans. Its application to more general graph Hamiltonians will be discussed elsewhere.
Assertion (iv) of Theorem 2.3 is stated for the adjacency operator only. It seems
that it can be extended to quite general finite hopping range Hamiltonians, which
are invariant under an axial symmetry.

The characterisation (ii) of Σfin by Σ̃ provides us with additional information.
Since the approximations HL

ω converge in strong resolvent sense to Hω, the set Σ̃
is dense in the almost sure spectrum of Hω. If H0 is the adjacency operator, Σ̃ is
contained in the ring of algebraic integers.

Theorem 2.1 and Proposition 2.2 assert only convergence at the continuity points
of the IDS. On the set of discontinuities of N the convergence may not hold. This
set can be quite large, as is seen in the case of the adjacency operator. From
the following Theorem 2.4 we will see that the convergence of the finite volume
approximations sometimes holds even at the discontinuities.

Theorem 2.4. Let E be an algebraic number and H0 a finite hopping range operator
with integer coefficients. Assume that there is an n ∈ N such that q0 takes values in
{0, . . . , n}∪{∞}. Then there exists a constant CE such that for all ε ∈]0, 1[, L ∈ N
and ω ∈ Ω:

NL
ω (E + ε)−NL

ω (E) ≤ CE

log(1/ε)
.

The same statement applies to the restriction H∞
ω to the infinite active cluster

X∞(ω).

More generally, Theorem 2.4 still holds, if one merely assumes that H0 and q
take values in a finite subset of the integers of an algebraic number field, see [Far98,
Sec. 9]. Such estimates have been used to analyse the IDS of (non-random) Harper
operators on graphs and Laplacians on simplicial complexes in [MY02, DMY]. These
papers establish right log-Hölder continuity of the IDS at algebraic integers and
global convergence for the models considered there.

In the case that H0 is the adjacency operator, all discontinuities of the IDS are
algebraic integers, and so we can use Theorem 2.4 to derive the following

Corollary 2.5. If H0 is the adjacency operator, the convergence limL→∞NL
ω (E) =

N(E) holds for all E ∈ R. Moreover, the IDS is right log-Hölder continuous at
algebraic integers E

N(E + ε)−N(E) ≤ CE

log(1/ε)
where ε and CE are as in Theorem 2.4.

In [DS84] Delyon and Souillard showed that the IDS of the Anderson model on
the lattice is continuous, for any distribution of the coupling constants qk. For this
result, the coupling constants even do not need to be independent, but merely an
ergodic array of random variables. In [DS84] it is furthermore observed that this
result breaks down for the quantum percolation model. We address now the ques-
tion, how their result can be adapted to mixed Anderson-percolation Hamiltonians
we are considering.

Theorem 2.6. Assume that µ = µc + (1 − p)δ∞, i.e. µ has no atoms at finite
values. Then the IDS of Hω is continuous.

Finally, we derive a Wegner estimate for finite truncations of the Hamiltonian
Hω. It implies the Lipschitz continuity of the IDS and a bound on its derivative
dN(E)

dE , the density of states. Wegner estimates [Weg81] play a crucial role in the
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study of the dense pure point spectrum of random Hamiltonians. Overviews dealing
with this topic include [CL90, PF92, Sto01, Ves04], see also the references therein.

Theorem 2.7. Assume σ(H) ⊂ [s−, s+] and that for a, b ∈ R the measure µ is
absolutely continuous on the interval ]a+s−, b+s+[, i.e. µ|]a+s−,b+s+[(dx) = f(x)dx,
and that f ∈ L∞. Then, for every interval I with dist(I, ]a, b[c) ≥ δ > 0 we have

(5) E{TrχI(HL
ω )} ≤ C |I|Ld

where C = 2d+2
(

b−a+s+−s−+1
δ

)2 ‖f‖∞
µ(]a+s−,b+s+[) .

It follows that the constant C in (5) is an upper bound on the density of states:

dN(E)
dE

≤ C for all E ∈]a, b[

The theorem applies in particular to distributions µ of the form p f(x)dx + (1 −
p) δ∞(x). If a bounded density exists globally for µ, we recover global Lipschitz
continuity of the IDS and a global bound on the density of states, cf. [Weg81].

In [KV02] a similar result has been proven by Kirsch and the present author
for random Schrödinger operators on L2(Rd) near the bottom of the spectrum. To
separate the singular component of the distribution µ one has to use some ideas
beyond the usual Wegner estimates. Similar ideas to those used in [KV02] and the
present paper can be found in [Jes92], respectively [CHKN02, § 3.2].

Both Theorems 2.7 and 2.6, together with their proofs, apply to the restriction
H∞

ω of the random Hamiltonian to the infinite cluster, too.

3. Generalisations: Amenable graphs and correlated potentials

Most of the results stated in the previous section extends to more general models.
In particular one can replace the lattice Zd by a more general graph and relax the
iid condition on the stochastic process qk(ω). In this section we explain this more
general setting and state which of the theorems of § 2 hold in this situation. The
proofs in Sections 4 to 7 are given for the general models. More details about the
model discussed in the sequel can be found in [Ves].

Let V be the set of vertices and E the set of edges of a graphX. Let dist : V ×V →
N∪{0} be the distance function V assigning to each pair of vertices the length of the
shortest path between them. In the sequel we will by abuse of language identify the
graph X with its set of vertices V . Note that two vertices are connected by an edge
if and only if their distance dist is equal to one. Thus the information contained in
the set E may be replaced by the information contained in the function dist. We
will be considering sub-graphs G of X. The distance function on G will be simply
the restriction of the distance function on X, i.e. we will only consider induced
sub-graphs of X. Our situation is so simple because we are only considering site-
percolation. Bond-percolation gives rise to general sub-graphs of X which need not
be induced.

Let Γ be a group of graph-automorphism acting on the graph X. It induces a
projection map proj : X → X/Γ. We assume that the quotient is a finite graph.
This implies in particular that the degree of the vertices in X is uniformly bounded.
We denote the smallest upper bound by deg+. Chose a vertex [k] ∈ X/Γ and a rep-
resentative k ∈ [k] ⊂ X. Starting from k, lift pathwise the vertices and edges of X/Γ
to obtain a connected set of vertices and edges F̃ ⊂ X, such that proj|F̃ : F̃ → X/Γ
is a bijective map. The set F := F̃ ∪ {k ∈ X | k is an endpoint of an edge in F}
is a graph, which we call fundamental domain. Note that proj|F : F → X/Γ is a
graph-map, which is bijective on the set of edges, but not on the set of vertices.
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We construct a probability space (Ω,A,P) associated to percolation on X. Let
Ω = ×k∈X [0,∞] be equipped with the σ-algebra A generated by finite dimensional
cylinders sets. Denote by P a probability measure on Ω and assume that the mea-
surable shift transformations

τγ : Ω → Ω, (τγω)k = ωγ−1k

are measure preserving. Moreover, let the family τγ , γ ∈ Γ act ergodically on
Ω. By the definition of τγ , γ ∈ Γ the stochastic field q : Ω × V → [0,∞] given by
q(ω, k) = qk(ω) = ωk, k ∈ V is stationary or equivariant, i.e. q(τγω, k) = q(ω, γ−1k).
The mathematical expectation associated to the probability P will be denoted by
E.

By the assumptions on X and F , the group Γ is discrete and finitely generated.
We assume that Γ is amenable. This means that there exists a sequence {IL}L of
finite, non-empty subsets of Γ such that for any finite K ⊂ Γ and ε > 0

(6) |IL∆KIL| ≤ ε |IL|
for all L large enough. A sequence {IL}L with this property is called Følner se-
quence, cf. e.g. [AS93]. Now for finitely generated amenable groups there exists a
Følner sequence of subsets, which is increasing and exhausts Γ, cf. Theorem 4 in
[Ada93]. From [Lin01] we infer that each Følner sequence has an tempered subse-
quence. A tempered Følner sequence is a sequence which satisfies in addition to (6)
the growth condition

there exists C <∞ such that for all L ∈ N : |ILI−1
L−1| ≤ C|IL|

where I−1
L := {γ|γ−1 ∈ IL}. To each increasing, tempered Følner sequence associate

an admissible exhaustion {ΛL}L of X given by

(7) ΛL :=
⋃

γ∈I−1
L

γF ⊂ X.

A (linear) finite hopping range operator H0 : `2(Γ) → `2(Γ) is defined by the
properties

(i) H0(k, j) = H0(j, k) ∈ R,
(ii) H0(γk, γj) = H0(k, j) for all γ ∈ Γ and
(iii) H0(k, j) = 0 if dist(k, j) ≥ R, for some R ∈ N.
Assume without loss of generality |H0(k, j)| ≤ 1 for all matrix elements. It follows
that the `2-operator-norm ofH0 is bounded byM := 2 degR

+. SinceH0 is symmetric,
it is a selfadjoint operator. In particular, the spectrum of H0 and all its restrictions
to sub-graphs of X is contained in [−M,M ].

The sub-graphs X(ω), X∞(ω), ΛL, ΛL(ω), Λ∞L (ω), Λcon
L (ω) and the operators

Hω, HL
ω , H∞,L

ω , Hcon,L
ω are defined as in Section 2, except that Zd is replaced by

the graph X and ΛL is defined by (7).
In the remainder of this section we present generalisations of the results of § 2

to the more general setting introduced above.

Theorem 3.1. There exists an Ω′ ⊂ Ω of full measure and subsets of the real
numbers Σ and Σ•, where • ∈ {disc, ess, ac, sc, pp, fin}, such that for all ω ∈ Ω′

σ(Hω) = Σ and σ•(Hω) = Σ•

for any • = disc, ess, ac, sc, pp, fin. Moreover, Σdisc = ∅ for infinite Γ. There exist
a distribution function N called integrated density of states such that for all ω ∈ Ω′

(8) lim
L→∞

NL
ω (E) = N(E)

at all continuity points of N . The following trace formula holds for the IDS
(9)
N(E) = |F|−1E {Tr[χFPω(]−∞, E[)]} = |ΛL|−1E {Tr[χΛL

Pω(]−∞, E[)]} ∀L ∈ N.
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The almost-sure spectrum Σ coincides with the set of points of increase of the IDS

(10) Σ = {E ∈ R | N(E + ε) > N(E − ε) for all ε > 0}

Analogous statements hold for the quantities N∞,L
ω , N∞,Σ∞ and Σ∞

• , where • =
disc, ess, ac, sc, pp, fin, which are associated to H∞

ω .

The proof of the theorem can be inferred from [Ves]. It is based on the same
argument for random lattice Hamiltonians. The difference to this simpler case is
that the group Γ is not abelian, but merely amenable. To overcome this difficulty
some techniques from [PV02, LPV04] are used. Equality (9) is related to the fact
that all means on `∞(Γ) take the same value on the function

X 3 k 7→ E{Tr[δkPω(]−∞, E[)]} ∈ R

Proposition 3.2. For almost all ω, limL→∞N con,L
ω (E) = N∞(E) holds at all

continuity points E of N∞.

The set Σ̃ is defined in the same way as in (4), except that Zd is now replaced
by X.

Theorem 3.3. (i) Σfin = supp νpp.
(ii) If qk, k ∈ X take only the values 0 and ∞, we have Σfin ⊂ Σ̃. If, moreover,

the qk, k ∈ X are independent and non-trivial random variables, we have
Σfin = Σ̃.

(iii) If an infinite H0-cluster exists almost surely we have Σ∞
fin = supp ν∞pp.

The proof of the equality Σ∞
fin = Σfin for X = Zd, H0 the adjacency operator,

and qk, k ∈ Zd iid, does not extend directly to more general situations. Certainly
it is necessary that the graph exhibits sufficiently many axes of symmetry, as is
for example the case for the triangular or the honeycomb lattice. It is also not
immediately clear how to extend the result to correlated qk. One should expect the
result to hold, if the range of the Hamiltonian is larger than the correlation length
of the process qk.

Theorem 3.4. Let E be an algebraic number and H0 a finite hopping range operator
with integer coefficients. Assume that there is an n ∈ N such that q0 takes values in
{0, . . . , n}∪{∞}. Then there exists a constant CE such that for all ε ∈]0, 1[, L ∈ N
and ω ∈ Ω:

NL
ω (E + ε)−NL

ω (E) ≤ CE

log(1/ε)
.

The same statement applies to the restriction to the infinite active cluster X∞(ω).

Corollary 3.5. Corollary 2.5 applies verbatim the the present, more general situ-
ation.

For deterministic graphs, i.e. in the case that the probability space degenerates
to a point, such results have been obtained in [DMY]. In this case our proof of
Corollary 3.5 seems to streamline some arguments from the L2-invariants literature,
e.g. [DMY, MY02]. For a different approach to prove the convergence of the IDS
at all energies for periodic Hamiltonians see [MSY03].

Theorems 2.6 and 2.7 are special cases of the following results:

Theorem 3.6. Assume that the random variables qk, k ∈ X are independent and
µ = µc + (1 − p)δ∞, i.e. µ has no atoms at finite values. Then the IDS of Hω is
continuous.

Theorem 3.7. Assume that the random variables qk, k ∈ X are independent,
σ(H0) ⊂ [s−, s+] and that for a, b ∈ R the measure µ is absolutely continuous
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on the interval ]a+ s−, b+ s+[, i.e. µ|]a+s−,b+s+[(dx) = f(x)dx, and that f ∈ L∞.
Then, for every interval I with dist(I, ]a, b[c) ≥ δ > 0 we have

(11) E{TrχI(HL
ω )} ≤ C |I| |ΛL|

where C = 2d+2
(

b−a+s+−s−+1
δ

)2 ‖f‖∞
µ(]a+s−,b+s+[) .

4. Local definition of the IDS

In this section we prove Proposition 3.2, i.e. we show that the IDS on the infinite
cluster can be defined in two equivalent ways. The first one is defined by considering
finite volume restrictions of the infinite active cluster; the second by using only local
information to define the finite volume operator.

On the way we get insights which are by themselves interesting. We prove that
finite clusters in X(ω) have a well defined density. Moreover, the density of clusters
of size n tends to zero as n tends to infinity.

For n ∈ N set

Xn(ω) := {k is contained in a finite active cluster of size ≥ n }.

For both n ∈ N and n = ∞ denote g(n, ω, L) := |Xn(ω)∩ΛL|
|ΛL| .

Lemma 4.1. For n ∈ N ∪ {∞} there exists G(n) ∈ [0, 1] such that

lim
L→∞

g(n, ω, L) = G(n) for almost all ω.

Proof.

g(n, ω, L) = |ΛL|−1
∑
k∈X

χXn(ω)(k)χΛL
(k) = |IL|−1

∑
γ∈I−1

L

|F|−1
∑
k∈X

χXn(ω)(k)χγF (k).

Since χγF (k) = χF (γ−1k), we have∑
k∈X

χXn(ω)(k)χγF (k) =
∑
j∈X

χXn(ω)(γj)χF (j).

Now γX(ω) = X(τγω) implies γXn(ω) = Xn(τγω), and this in turn χXn(ω)(γj) =
χγ−1Xn(ω)(j) = χXn(τ−1

γ ω)(j). With

g(n, ω) := |F|−1
∑
j∈F

χXn(ω)(j) = |F|−1 Tr(χFχXn(ω))

this implies |F|−1
∑
j∈X

χXn(ω)(j)χγF (j) = g(n, τ−1
γ ω). Now 0 ≤ g(n, ω) ≤ 1 for all

n and ω, thus the function is certainly in L1(Ω). Thus we may apply Lindenstrauss’
ergodic theorem [Lin01] and conclude for almost every ω ∈ Ω, as well as in L1 sense
the following convergence:

g(n, ω, L) = |IL|−1
∑

γ∈I−1
L

g(n, τ−1
γ ω) → E{g(·, n)} = |F|−1E{Tr(χFχXn(·))} =: G(n)

for L→∞. �

This proves that clusters of size n have a well defined density. Indeed, since
Xn ⊃ Xn+1 the density of clusters of size n is just G(n)−G(n+ 1). Note that due
to the the way how Xn is defined we do not have G(n) → G(∞) unless the infinite
cluster is empty almost surely. Next we prove that the density tends to zero as n
grows :

G(n) → 0 as n→∞.

For this aim, we will show that g(ω, n) = |F|−1 Tr[χF χXn(ω)] converges to zero
pointwise.
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Observe the monotonicity Xn(ω) ⊃ Xn+1(ω) and ∩nX
n(ω) = ∅. In particular,

for each k ∈ X there exists a Nk such that k 6∈ Xn(ω) for all n ≥ Nk. Choose
N = maxk∈F Nk, then F ∩Xn(ω) = ∅ for all n ≥ N .

⇒ Tr[χFχXn(ω)] = 0 for n ≥ N.

Note that N depends on ω. Since 0 ≤ g(ω, n) ≤ 1 and P is finite, Lebesgues’
dominated convergence theorem implies limn→∞ E{g(·, n)} = 0.

Now we turn to the proof of Proposition 3.2. For any random Hamiltonian Bω

and Λ ⊂ X set Λ∞(ω) := Λ ∩X∞(ω),

B∞
Λ(ω) = χΛ∞(ω)BωχΛ∞(ω)

and
Bcon

Λ(ω) = χΛcon(ω)BχΛcon(ω)

where Λcon(ω) := {k ∈ Λ | exists path of active sites from k to Λc}, as defined
before. The equality of N∞ and N con will follow from the following

Lemma 4.2. For almost all ω ∈ Ω we have

lim
L→∞

Tr[Bcon
ΛL(ω) −B∞

ΛL(ω)]

|ΛL|
= 0.

Proof. We have
Tr[Bcon

ΛL(ω) −B∞
ΛL(ω)] =

∑
•

[B(k, k)]

where the bullet denotes summation over all active sites in ΛL which are not in
X∞(ω), but are connected by an active path to Λc

L. Thus

Tr[Bcon
ΛL(ω) −B∞

ΛL(ω)]

|ΛL|
≤ ‖B‖

(
g(h, ω, L) +

|∂i
hΛL|
|ΛL|

)
converges to ‖B‖ E{g(h, ω)} = ‖B‖ G(h) as L → ∞. However, G(h) goes to zero
for h→∞, as we saw before. �

The lemma can be applied to Bω = Hm
ω . Thus it implies that the difference of

the moments of N con,L
ω and N∞,L

ω converges to zero almost surely as L→∞. Thus
the sequence N con,L

ω converges also to the distribution function N , which proves
Proposition 3.2.

5. Finitely supported eigenstates & discontinuities of the IDS

In this section we prove Theorems 2.3 and 3.3. Along the way we establish a cor-
respondence between finitely supported eigenstates, unique continuation properties,
and discontinuities of the IDS.

Definition 5.1. For a given graph X, a probability measure P on the corresponding
probability space Ω, a finite hopping range operator (of range R), and a random
Hamiltonian Hω, we say that the unique continuation property holds for {Hω}ω at
energy E ∈ R if for any finite Λ ⊂ X, P-almost every ω and f ∈ `2(X(ω))

f ≡ 0 on ∂o
2RΛ and Hωf = Ef implies f ≡ 0 on Λ.

The unique continuation property for {H∞
ω }ω is defined analogously.

Proposition 5.2. Let X,Ω,P and Hω be as above. The following properties are
equivalent

(i) The IDS of {Hω}ω is discontinuous at E.
(ii) The unique continuation property does not hold for {Hω}ω at E.
(iii) E ∈ Σfin, where Σfin is associated to {Hω}ω.
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For the family {H∞
ω }ω the statement of Proposition 5.2 holds analogously.

Proof. We prove first ¬(ii) ⇒ ¬(i), i.e. the unique continuation property at E
implies the continuity of N at E. Let Λ ⊂ X be finite and f ∈ ranχΛPω(E),
i.e. f = χΛg,Hωg = Eg. If g ≡ 0 on ∂o

2RΛ then the unique continuation property
implies g ≡ 0 on Λ and thus f ≡ 0 on X(ω). Thus it follows: dim ranχΛPω(E) ≤
dim `2(∂o

2RΛ) = |∂o
2RΛ|.

Since the dimension of the range and the co-kernel coincide

Tr(χΛPω(E)) = Tr(χΛPω(E)χΛ) ≤ ‖χΛPω(E)χΛ‖dim ranχΛPω(E)χΛ ≤ |∂o
2RΛ|.

This holds for any Λ = ΛL and almost every ω. Thus

|F|−1E{Tr[χFPω(E)]} = inf
L
|ΛL|−1E{Tr[χΛL

Pω(E)]} = 0

since ΛL, L ∈ N is based on a Følner sequence.
We prove (ii) ⇒ (iii). Since the unique continuation property fails at E, there

exists a finite Λ ⊂ X and Ω′ ⊂ Ω of positive measure, such that for all ω ∈ Ω′ there
is function fω ∈ `2(V ) with the following properties:

fω ≡ 0 on ∂o
2RΛ fω 6≡ 0 on Λ and Hωfω = Efω.

Now gω := χΛfω is a finitely supported eigenfunction for E, thus E ∈ Σfin.
We prove (iii) ⇒ (i). Since E ∈ Σfin there is Ω′ ⊂ Ω of full measure such

that E ∈ σfin(Hω) for all ω ∈ Ω′. Set ΩE,L := {ω | ∃f ∈ `2(X) : supp f ⊂
ΛL and Hωf = Ef}. Then

Ω′ ⊂ ΩE := {ω | ∃Λ ⊂ X finite and f ∈ `2(X) : supp f ⊂ Λ,Hωf = Ef} = ∪L∈NΩE,L.

Since P(ΩE) = 1, not all ΩE,L can have measure 0. Thus there is a J ∈ N such
that P(ΩE,J) > 0. By definition there exists for all ω ∈ ΩE,J a normalized f ∈
`2(X) with support contained in ΛJ and Hωf = Ef . We decompose the spectral
projection Pω(E) = |f〉〈f | + P̃ω(E), P̃ω(E) ≥ 0. Consequently χΛJ

Pω(E)χΛJ
≥

|f〉〈f | ,

Tr[χΛJ
Pω(E)] ≥ Tr[|f〉〈f |] =

∑
k∈ΛJ

|f(k)|2 = 1 for ω ∈ ΩE,J

and |F|−1E{Tr[χFPω(E)]} = |ΛJ |−1E{Tr[χΛJ
Pω(E)]} ≥ |ΛJ |−1P(ΩE,J) > 0. �

Similar arguments to the conclusion ¬(ii) ⇒ ¬(i) have been used elsewhere, see
e.g. [DS84, MY02, KLS03, DMY].

Proposition 5.3. If H0 is the adjacency operator on Zd and the qj , j ∈ Zd are iid,
we have Σ∞

fin = Σfin.

Proof. The inclusion Σ∞
fin ⊂ Σfin is trivial.

For E ∈ Σfin there exists a finite set S ⊂ Zd such that

ΩS := {ω | ∃fω ∈ `2(X(ω)), supp fω = S,Hωfω = Efω}

has positive measure. Pick a choice

(12) ω 7→ fω for all ω ∈ ΩS

Set a := min{j1 | j ∈ S} and let Λ′ ⊂ Zd be the minimal rectangular box which
contains S ∪ ∂o

2S \ {j | j1 = a− 2, a− 1}. Define the reflection

R : Zd → Zd, R(j1, . . . , jd) = (2a− j1, j2 . . . , jd).
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The set Λ := Λ′∪R(Λ′)∪{j | j1 = a−1, j ∈ ∂0
1Λ} is a box. Set S+ := S∪∂o

1S \{j |
j1 = a− 1} and

ΩR := {ω ∈ Ω | ∃ω′ ∈ ΩS : qj = q′j ∀ j ∈ S+

qj = qR(j) ∀ j ∈ R(S+)

qj <∞∀ j ∈ Λ \ (S+ ∪R(S+))}.
Since P(ΩS) > 0,P(q0 < ∞) > 0 and the random variables are i.i.d., it follows
P(ΩR) > 0. For each ω ∈ ΩR there exists an ω′ ∈ ΩS with ω �S+= ω′ �S+ and
therefore a function fω′ as in (12). We construct a new function

gω(j) :=


fω′(j) for j ∈ S+

fω′(R(j)) for j ∈ R(S+)
0 for all other j ∈ X(ω)

which satisfies Hωgω = Egω. Note that ΩR depends only on coordinates of q with
index j ∈ Λ.

Pick a k ∈ ∂i
1Λ and consider the percolating regime where P{Ωk} > 0 for Ωk =

{ω | k ∈ X∞(ω)}. If we pick an ω ∈ Ωk and replace the j ∈ Λ coordinates with
those of an element in ΩR, we still get a configuration in Ωk, since for elements in
ΩR all sites in ∂i

1Λ are active. By independence we conclude that supp g is a subset
of X∞(ω) with positive probability. �

The mirror charge idea employed in the proof has been used previously in [CCF+86],
and implicitly in a rudimentary form already in [KE72].

Proposition 5.4. Let H0 be finite hopping range Hamiltonian on a graph X with
amenable group Γ action. If the qk, k ∈ X are non-trivial, independent and take
only the values 0 and ∞, then Σfin = Σ̃.

Proof. If q0 ∈ {0,∞}, then by definition of Σfin we have Σfin ⊂ Σ̃. On the other
hand by independence all finite G ⊂ Zd occur in X(ω) with positive probability.
Thus σ(HG

0 ) ⊂ Σfin. �

6. Log-Hölder continuity at algebraic numbers

In this section we prove Theorem 3.4 and its Corollary 3.5. The proofs rely
on techniques of Lück [Lüc94] and Farber [Far98]. Lück studies in his paper the
approximation of geometric L2-invariants, in particular Betti numbers, on covering
spaces by their analogues on compact quotients. Farber works in a more general
and abstract setting studying von Neumann categories. The techniques of these
two papers have thereafter been used in different contexts, for instance for rational
Harper operators on graphs [MY02] or combinatorial Laplacians on covering spaces
[DMY].

The following is a formulation of a Lemma of Lück [Lüc94]:

Lemma 6.1. Let A : CD → CD or : RD → RD be a hermitian, respectively sym-
metric, matrix and p(t) = det(t−A) its characteristic polynomial. Let p(t) = tkq(t)
for a polynomial q with q(0) 6= 0. Let K = max(1, ‖A‖) and 0 < C ≤ |q(0)|. Denote
by N (A,E) the number of eigenvalues of A (counting multiplicities) less than or
equal to E. Then we have for all ε ∈]0, 1[

(13) N (A, ε)−N (A, 0) ≤ log 1/C +D logK
log 1/ε

.

Note the different normalization ofN than in the case of finite volume restrictions
of Hω. The proof in [Lüc94] applies to non-negative matrices A. Since in the
following we will be dealing with merely symmetric matrices, we modify the proof
to cover this case as well.
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Proof. We enumerate the eigenvalues Ei of A in non-decreasing order counting
multiplicities. Then there exist integers p, r and s such that

E1 ≤ . . . Ep < 0 = Ep+1 = · · · = Er < Er+1 ≤ · · · ≤ Es ≤ ε < Es+1 ≤ · · · ≤ ED.

By definition N (A, ε) − N (A, 0) = s − r and
∏p

i=1(t − Ei)
∏D

i=r+1(t − Ei) = q(t),
in particular

s∏
i=r+1

|Ei| = |q(0)|
p∏

i=1

|Ei|−1
D∏

i=s+1

|Ei|−1.

By definition of s, C and K we have

εN (A,ε)−N (A,0) =
s∏

i=r+1

ε ≥ C K−D.

We take logarithms and obtain {N (A, ε)−N (A, 0)} log ε ≥ logC −D logK. Since
log ε is negative, this implies

N (A, ε)−N (A, 0) ≤ logC −D logK
log ε

.

�

If A has integer coefficients, |q(0)| is a non-vanishing integer, thus greater or
equal to 1. One can apply the previous lemma to some energy E which is not zero,
if it is an algebraic number. For this the following facts will be useful:

Let α be an algebraic integer and mα its monic minimal polynomial, i.e. the
irreducible polynomial with leading coefficient equal to one such that mα(α) = 0.
The degree of α equals the degree of mα. The field Q(α) is an extension of Q
of degree n. Enumerate all the roots α1 = α, α2, . . . , αn of mα. Then there are
n distinct embeddings ej : Q(α) → C, j = 1, . . . , n such that ej(α) = αj . The
embeddings are homomorphisms of fields. The product of all roots of mα can be
written as

∏
j αj =

∏
j ej(α). It is called the norm of α. Since it is the last

coefficient of mα, it is an integer, and since mα is irreducible, it does not vanish.
Therefore

(14) |ek(α)| ≥
∏
j 6=k

|ej(α)|−1 ≥ max
j
{ej(α)}−n+1.

Thus an upper bound on all ej(α), implies a lower bound on all of them. This fact
was first used in a similar context in [Far98, Sec. 12.3].

Let A be an D × D matrix with coefficients in Z and E an algebraic number.
Denote by p(t) = det(t−A) the characteristic polynomial of A. There is an integer
k ∈ {0, . . . , D} and a polynomial q such that p(t+ E) = q(t) tk and q(0) 6= 0. The
value of q(0) equals the coefficient of tk in the polynomial p(t+ E). By expanding
the polynomial one calculates (see e.g. page 130 in [MY02])

q(0) =
D−k∑
j=0

(
k + j

k

)
ck+jE

j

where cr is the r-th coefficient of p, i.e. the r-th symmetric polynomial of the roots
of p. In particular cr ∈ Z.

There is an algebraic integer α and b ∈ N such that E = α
b . (We may assume

α 6= 0, since we are preparing to apply Lemma 6.1 to the operator A − E. For
α = 0, A − E = A and thus the Lemma may be applied directly.) Thus q(0)bD is
an algebraic integer. Since the embedding el : Q(α) → C is an homomorphism of
fields and thus leaves Q invariant we have

el(q(0)bD) =
D−k∑
j=0

(
k + j

k

)
ck+j el(α)j bD−j .
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To estimate the absolute value of this expression from above note the following:

(i)
(

k+j
k

)
≤ 2D 4D, since k, j ≤ D.

(ii) |Tr(Ar)| ≤ D‖A‖r.
(iii) Using Lemma B in § 12.3 of [Far98] we obtain |cr| ≤

(
D
r

)
‖A‖r.

(iv) R := max{|el(α)| | 1 ≤ l ≤ n} ≥ |el(α)| for all 1 ≤ l ≤ n.
Thus |el(q(0)bD)| ≤ 4D3(8‖A‖Rb)D and (14) implies

(15) |q(0)| ≥ b−D{4D3(8‖A‖Rb)D}−n+1.

If we apply Lemma 6.1 to A− E where A and E are as above, we obtain
N (A,E + ε)−N (A,E)

D
=
N (A− E, ε)−N (A− E, 0)

D
≤ log 1/C
D log 1/ε

+
logK
log 1/ε

where 1/C can be chosen as bD{4D3(8‖A‖Rb)D}n−1, which we do in the sequel.
Thus
log 1/C
D

≤ log b+(n−1)
{

log(4D3)
D

+ log(8Rb) + log ‖A‖
}
≤ C1(E)+C2(E) log ‖A‖

where C1, C2 are constants which depend only on E.

In our application A is equal to some HL
ω . Thus ‖A‖ = ‖HL

ω ‖ ≤ ‖H‖+‖q0‖∞ for
all ΛL and ω. Here ‖q0‖∞ denotes the essential supremum of the random variable
|q0| when restricted to the set {ω | |q0(ω)| < ∞}. Thus we obtain for the IDS of
HL

ω the estimate:

NL
ω (E + ε)−NL

ω (E) ≤ CE

log(1/ε)
and Theorem 3.4 is proven.

We have established that the family of functions NΛ
ω , where Λ runs through

an admissible exhaustion, is equicontinuous from the right at the point E. To
conclude Corollary 3.5 we will apply a simple lemma concerning the convergence of
distribution functions. Together with the weak convergence of {NΛ

ω }Λ it will imply
NΛ

ω (E) → N(E) as Λ → X.

Lemma 6.2. Let N,NL : R → [0,∞[ for L ∈ N be monotone increasing, right-
continuous functions, each of which is constant on the intervals ] − ∞,−M ] and
[M,∞[ for some L-independent M . Assume that for all f ∈ C0(R) we have
limL→∞NL(f) = N(f). Let the family NL be equicontinuous from the right at
E ∈ R, i.e. there exists a function δ such that limε↘0 δ(ε) = 0 and

(16) NL(E + ε)−NL(E) ≤ δ(ε) for all L ∈ N.
Then limL→∞NL(E) = N(E).

Proof. For ε > 0, let fε ∈ C0(R) be a function with support in [−M − 1, E + ε],
such that fε(x) = 1 for all x ∈ [−M,E], and fε is monotone on [E,E + ε]. By
monotonicity and (16) we have

NL(fε)− δ(ε) ≤ NL(E) ≤ NL(fε).

First we send L→∞
N(fε)− δ(ε) ≤ lim inf

L→∞
NL(E) ≤ lim sup

L→∞
NL(E) ≤ N(fε) ≤ N(E + ε)

and then ε→ 0 to obtain, using right continuity of N

N(E) ≤ lim inf
L→∞

NL(E) ≤ lim sup
L→∞

NL(E) ≤ N(E).

�
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The same arguments apply to the restrictions to the infinite cluster.

7. Estimates à la Wegner and Delyon-Souillard

In this section we prove Theorems 3.6 and 3.7. The proofs hold for the infinite
cluster operator H∞

ω as well. We assume that the random variables qk are iid with
distribution µ. First we show that jumps of the IDS imply the existence of atoms
of µ �R. To this end we use a lemma of Stollmann [Sto00]:

Lemma 7.1. Let ρ be a finite measure on R, Φ: RJ → R continuous and monotone
in each variable, such that

Φ(q + t e)− Φ(q) ≥ t where e = (1, . . . , 1) ∈ RJ , t ∈ R.

Set s(ρ, ε) := sup{ρ[a, a+ ε] | a ∈ R}. Then we have for any interval I

(⊗Jρ){q | Φ(q) ∈ I} ≤ J s(ρ, |I|) ρ(R)J−1.

If N is discontinuous at E, by Proposition 5.2 there exists a finite Λ ⊂ X and a
set Ω′ ⊂ Ω of positive measure such that for all ω ∈ Ω′ exists a function f = fω with
support in Λ and Hωf = Ef . Since f feels the potential only in Λ+ := Λ ∪ ∂o

RΛ,
for ω and f as before we have HΛ+

ω f = Ef . But P{ω | HΛ+

ω f = Ef} > 0 implies
that µ has an atom on R as we will prove now:

Let A be any subset of Λ+. Set Ω(A) := {ω | qj <∞∀j ∈ A, qj = ∞∀j ∈ Λ+\A}.
Then Ω is the disjoint union of Ω(A), A ⊂ Λ+. Thus

0 < P{ω | HΛ+

ω f = Ef} =
∑
A

P{ω ∈ Ω(A) | HΛ+

ω f = Ef}.

For ω ∈ Ω(A) the operator HΛ+

ω = HA
ω acts on `2(A) and

∑
j∈A δj is the identity

operator. Let E1(ω), . . . , E|A|(ω) denote the eigenvalues of HA
ω . Then the function

Φ(ω) := En(ω) is continuous and monotone increasing in each variable qj ∈ A and
Φ(ω + t e)− Φ(ω) = t where t ∈ R and e = (1, . . . , 1) ∈ RA. Note that if ω ∈ Ω(A)
then ω+ t e ∈ Ω(A) for all t ∈ R. Thus we can apply Lemma 7.1 with ρ = µ �R and
obtain

P{ω ∈ Ω(A) | E ∈ σ(HΛ+

ω )} ≤
∑

n

P{ω ∈ Ω(A) | En(ω) = E}

≤
∑

n

P{ω ∈ Ω(A) | En(ω) ∈ Bε(E)} ≤ |A|2 s(ρ, ε)

for every ε > 0. If ρpp is void, infε>0 s(ρ, ε) = 0. This yields a contradiction and
proves Theorem 3.6. �

Now we turn to the proof of the Wegner estimate (Theorem 3.7). Thus we
consider the situation where σ(H) ⊂ [s−, s+] and µ̃ := µ �]a+s−,b+s+[ has a density
f ∈ L∞.

Similarly as in the previous proof we partition the probability space according
to the variables which lie in the singular, respectively absolutely continuous range
of values. Let A ⊂ Λ and

Λac(ω) := {j ∈ Λ | qj ∈]a+ s−, b+ s+[}
Λsing(ω) := {j ∈ Λ | qj 6∈]a+ s−, b+ s+[} = Λ \ Λac(ω)

Ω(A) := {ω ∈ Ω | Λac(ω) = A} = {ω ∈ Ω | qj ∈]a+ s−, b+ s+[⇔ j ∈ A}.

The family Ω(A), A ⊂ Λ forms a disjoint cover of Ω.
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Lemma 7.2. Fix δ > 0, let I ⊂ R be such that dist(I, ]a, b[c) ≥ δ, and assume that
an eigenvalue En(ω) of HΛ

ω is contained in I. Then∑
j∈Λac(ω)

∂En(ω)
∂qj

≥
(

δ

b− a+ s+ − s− + 1

)2

.

Proof. First note that if qj is in ]a + s−, b + s+[, so is a neighbourhood of qj .
Thus when defining the derivative ∂

∂qj
we can assume that Λac(ω) is fixed. We set

qc = b+ s+ + 1 and partition the potential

V ac
ω =

∑
j∈Λac(ω)

(qj − qc) δj , V sing
ω =

∑
j∈Λsing(ω)

qj δj +
∑

j∈Λac(ω)

qc δj .

Let ψ be a normalised eigenfunction corresponding to En(ω). Then∑
j∈Λac(ω)

∂En(ω)
∂qj

=
∑

j∈Λac(ω)

〈ψ, δjψ〉 ≥
‖V ac

ω ψ‖2

(b− a+ s+ − s− + 1)2

=
‖(HΛ + V sing

ω − En(ω))ψ‖2

(b− a+ s+ − s− + 1)2
.

Since HΛ+V sing
ω has no spectrum in ]a, b[, we have ‖(HΛ+V sing

ω −En(ω))ψ‖2 ≥ δ2

and the lemma is proven. �

Fix now A ⊂ Λ and consider ω ∈ Ω(A). To estimate E{χΩ(A)P
Λ
ω (I)} we write

I◦ = Bε(E) and proceed similarly as in [Weg81, Kir96] and [KV02]. Introduce a
smooth monotone function ρ : R → [0, 1] taking the value 0 on ] −∞,−ε] and the
value 1 on [ε,∞[. Now

χ]E−ε,E+ε[(x) ≤
∫ 2ε

−2ε

dt ρ′(x− E + t)

implies by the spectral theorem

Tr
[
PΛ

ω (Bε(E))
]
≤ Tr

[ ∫ 2ε

−2ε

dt ρ′(HΛ
ω − E + t)

]
=

∑
n∈N

∫ 2ε

−2ε

dt ρ′(EΛ
n (ω)− E + t).

The chain rule implies

ρ′(En(HΛ
ω )− E + t) ≤

(
b− a+ s+ − s− + 1

δ

)2 ∑
j∈A

∂ρ(En(HΛ
ω )− E + t)
∂qj

Since δj is a rank one operator, we have∫ b+s+

a+s−

dqj f(qj)
∑
n∈N

∂ρ(En(HΛ
ω )− E + t)
∂qj

≤ ‖f‖∞

which implies

E

{
χΩ(A)

∑
n∈N

∂ρ(En(HΛ
ω )− E + t)
∂qj

}
≤ ‖f‖∞

E{χΩ(A)}
µ(]a+ s−, b+ s+[)

.

Therefore

E{χΩ(A)P
Λ
ω (I)} ≤ 4

(
b− a+ s+ − s− + 1

δ

)2

‖f‖∞
E{χΩ(A)}

µ(]a+ s−, b+ s+[)
|A| ε.

Summing over A ⊂ Λ gives the desired estimate (11).
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