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Abstract

We review the Johnson-Moser rotation number and the K0-theoretical gap labelling of

Bellissard for one-dimensional Schrödinger operators. We compare them with two further

gap-labels, one being related to the motion of Dirichlet eigenvalues, the other being a

K1-theoretical gap label. We argue that the latter provides a natural generalisation of

the Johnson-Moser rotation number to higher dimensions.

1 Introduction

It is an interesting and very well known fact that the boundary of a domain plays a prominent
role both in mathematics and in physics. A case that comes immediately into mind is the
theory of differential equations where the boundary conditions determine quite a lot of the
whole solution. Another class of prominent examples in physics are topological quantum field
theories. In topological applications there are some even stronger statements which claim that
what happens in the boundary determines the behaviour of the system in the bulk completely.
Perhaps the most famous such statement is the holography principle in quantum gravity.

Similar ideas are manifested in [KS04a, KS04b] where a correspondance between bulk and
boundary topological invariants for certain physical systems arising in solid state physics was
found. This suggestion was mathematically based on K-theoretic and cyclic cohomological
properties of the Wiener-Hopf extension of the C∗-algebra of observables. In most applications
we have in mind in condensed matter physics this C∗-algebra of observables is obtained by
considering the Schrödinger operator and its translates describing the 1-particle approximation
of the solid.

Here we consider a simple example, a Schrödinger operator on the real line. The K0-theory
gap labels introduced by Bellissard et al. [BLT85, Be92] are bulk invariants. It is known that
these are equal to the Johnson-Moser rotation numbers [JM82] the existing proof being essen-
tially a corollary of the Sturm-Liouville theorem by which they are identified with the integrated
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density of states on the gaps. Here we give a direct identification of the Johnson-Moser rotation
number (for energies in gaps) with a boundary invariant, namely a Dirichlet rotation number.
This number has an operator algebraic and physical interpretation, namely as boundary force
per unit energy, and a K1-theoretical interpretation. The equality between the even and the
odd K-theoretic gap labels is an application of the above-mentioned correspondence between
bulk and boundary invariants.

We organise this article as follows: after recalling some well-known facts for one-dimensional
systems we discuss the Johnson-Moser rotation number in Section 3.1. In Section 3.2 we
introduce the Dirichlet rotation number of a gap and show that it coincides with the Johnson-
Moser rotation number for energies in that gap. We interprete the Dirchlet rotation number
in Section 3.3 as an odd K gap-label and in Section 3.4 as boundary force per unit energy.
All of Section 3 is based on a single operator, although its translates play a fundamental role.
In Section 4 we place this into the framework of ergodic theorems and prepare the ground for
the discussion of the underlying non-commutative topology which is carried in Section 5. This
section is held quite briefly, since it is mainly based on [Kel].

2 Preliminaries

In this article we consider as in [Jo86] a one-dimensional Schrödinger operator H = −∂2+V with
(real) bounded potential which we assume (stricter as in [Jo86]) to be bounded differentiable.
We also consider its translates Hξ := −∂2 + Vξ, Vξ(x) = V (x + ξ), and lateron its hull. The
differential equation HΨ = EΨ for complex valued functions Ψ over R has for all E two linear
independent solutions but not all E belong to the spectrum σ(H) of H as an operator acting
on L2(R). In this situation the following property of solutions holds [CL55].

Theorem 1 If E /∈ σ(H) there exist two real solutions Ψ+ and Ψ− of (H − E)Ψ = 0 which
vanish at ∞ and −∞, resp.. These solutions are linear independent and unique up to multipli-
cation by a factor.

We mention as an aside that Johnson proves even exponential dichotomy for such energies
[Jo86]. Clearly σ(Hξ) = σ(H) for all ξ.

We consider also the action of Hξ on L2(R≤0) with Dirichlet boundary conditions at the

boundary. If we need to emphazise this we will also write Ĥξ for the half-sided operator. The

spectrum is then no longer the same. Whereas the essential part of the spectrum of Ĥξ is
contained in that of Hξ [Jo86] the half sided operator may have isolated eigenvalues in the gaps
in σ(Hξ). Here a gap is a connected component of the complement of the spectrum, hence in

particular an open set. E is an eigenvalue of Ĥξ if (Ĥξ −E)Ψ = Ψ for Ψ ∈ L2(R≤0) which for E
in a gap of σ(Hξ) amounts to saying that the solution Ψ− of (Hξ −E)Ψ− = 0 from Theorem 1
satisfies in addition Ψ−(0) = 0.

Definition 1 We call E ∈ R a right Dirichlet value of Hξ if it is an eigenvalue of Ĥξ.

We recall the important Sturm-Liouville theorem.
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Theorem 2 Consider H := −∂2 + V with (real) bounded continuous potential acting on
L2([a, b]) with Dirichlet boundary conditions. The spectrum is discrete and bounded from below.
A real eigenfunction to the nth eigenvalue (counted from below) has exactly n− 1 zeroes in the
interior (a, b) of [a, b].

3 Rotation numbers

The winding number of a continuous function f : R/Z → R/Z is intuitively speaking the
number of times its graph wraps around the circle R/Z. This is counted relative to the orien-
tations induced by the order on R. Let Λ = {Λn}n be an increasing chain of compact intervals
Λn = [an, bn] ⊂ Λn+1 ⊂ R whose union covers R. The quantity

Λ(f) := lim
n→∞

1

bn − an

∫ bn

an

f(x)dx

is called the Λ-mean of the function f : R → R, existence of the limit assumed. Now let
f : R → R/Z be continuous and choose a continuous extension f̃ : R → R. To define the
rotation number of f we consider the expression

rotΛ(f) = lim
n→∞

f̃(bn) − f̃(an)

bn − an

which becomes the winding number of f if f is periodic of period 1. The limit does not exist
in general but if it does it is independent of the extension f̃ . If f is piecewise differentiable
then rotΛ(f) = Λ(f ′). Moreover, if U : R → C is a nowhere vanishing continuous piecewise
differentiable function then we can consider the rotation number of its argument function which
becomes

rotΛ(
arg(U)

2π
) = lim

n→∞

1

2πi(bn − an)

∫ bn

an

U

|U |

(

U

|U |

)′

dx (1)

3.1 The Johnson-Moser rotation number

Johnson and Moser in [JM82] have defined rotation numbers for the Schrödinger operator
H = −∂2 + V on the real line where V is a real almost periodic potential. They are defined as
follows: Let Ψ(x) be the nonzero real solution of (H − E)Ψ = 0 which vanishes at −∞, then
Ψ′ + iΨ : R → C is nowhere vanishing and

αΛ(H, E) := 2 rotΛ(
arg(Ψ′ + iΨ)

2π
). (2)

(Our normalisation differs from that in [JM82] for later convenience.) For the class of potentials
considered here the limit is indeed defined and even independent on the choice of Λ, we will
come back to that in Section 4.

Note that αΛ(H, E) has the following interpretations. If N(a, b; E) denotes the number of
zeroes of the above solution Ψ in [a, b] then αΛ(H, E) is the Λ-mean of the density of zeroes of
Ψ, namely one has

αΛ(H, E) = lim
n→∞

N(an, bn; E)

bn − an

.
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The integrated density of states of H at E is

IDSΛ(H, E) = lim
n→∞

1

|Λn|
Tr(PE(HΛn

)) (3)

provided the limit exists. Here |Λn| = bn − an is the volume of Λn, HΛn
the restriction of H to

Λn with Dirichlet boundary conditions and, for self-adjoint A, PE(A) is the spectral projection
onto the spectral subspace of spectral values smaller or equal to E. It will be important that
P (A) is a continuous function of A if E is not in the spectrum of A. Since Tr(PE(HΛn

)) is the
number of eigenfunctions of HΛn

to eigenvalue smaller or equal E Theorem 2 implies

Corollary 1 αΛ(H, E) = IDSΛ(H, E).

In particular, like the integrated density of states αΛ(H, E) is monotomically increasing in E
and constant on the gaps of the spectrum of H . It is moreover the same for all Hξ.

3.2 The Dirichlet rotation number

We now consider the continuous 1-parameter family of operators {Hξ}ξ with ξ ∈ R and Hξ =
−∂2 + Vξ, where Vξ(x) = V (x + ξ). We shall prove that the Johnson-Moser rotation number is
a rotation number which is defined by right Dirichlet values as a function of ξ.

Let ∆ be a gap in σ(Hξ) = σ(H) and define the set of right Dirichlet values in ∆

Dξ(∆) := {µ ∈ ∆|∃Ψ : (Hξ − µ)Ψ = 0 and Ψ(0) = Ψ(−∞) = 0} .

Suppose Dξ(∆) 6= ∅ for some ξ and let µ ∈ Dξ(∆) and Ψ the corresponding solution (Hξ−µ)Ψ =
0 satisfying the required boundary conditions. Define the following two sets S(µ) := {η|µ ∈
Dη(∆)} and Z(µ) := {x|Ψ(x − ξ) = 0}.

Lemma 1 S(µ) = Z(µ).

Proof: Define Ψη(x) = Ψ(x+(η−ξ)). Then (Hη −µ)Ψη = 0 and Ψη(−∞) = 0 for all η. Hence
Z(µ) = {η|Ψ(η − ξ) = 0} = {η|Ψη(0) = 0} ⊂ S(µ).

For the opposite inclusion if µ ∈ Dη(∆), then there exists Φ such that (Hη − µ)Φ = 0 with
Φ(0) = Φ(−∞) = 0. Define Φξ(x + (η − ξ)) = Φ(x). Then (Hξ − µ)Φξ = 0 with Φξ(−∞) = 0.
By Theorem 1, Ψ = λΦξ for some λ ∈ C∗, which implies Ψ(η − ξ) = λΦ(0) = 0 and hence
η ∈ Z(µ), thus S(µ) ⊆ Z(µ). 2

Let ξ ∈ S(µ), µ ∈ ∆. Since the spectrum of Ĥξ in the gap ∆ consists of isolated eigenvalues
which are non-degenerate by Theorem 1 we can use perturbation theory to find a neighbourhood
(ξ − ε, ξ + ε) and a differentiable function ξ 7→ µ(ξ) on this neighbourhood which is uniquely
defined by the property that µ(ξ) ∈ Dξ(∆). In fact, level-crossing of right Dirichlet values
cannot occur in gaps, since it would lead to degeneracies. As in [Ke04] we see that its first
derivative is strictly negative:

dµ(ξ)

dξ
=

∫ 0

−∞

dx|Ψξ(x)|2V ′
ξ = −|Ψ′

ξ(0)|2 < 0.
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Here Ψξ is a normalised eigenfunction of Ĥξ. Thus around each value ξ for which we find a
right Dirichlet value in ∆ we have locally defined curves µ(ξ) which are strictly monotonically
decreasing and non-intersecting. Since {Hξ}ξ is a norm-continuous family, the spectra σ(Hξ)
are continuous in ξ (w.r.t. Hausdorff topology) so that the curves µ(ξ) can be continued until
they reach the boundary of ∆ or their limit at +∞ or −∞, if it exists.

Let K be the circle of complex numbers of modulus 1. We define the function µ̃ : R → K
by

µ̃(ξ) = exp 2πi
∑

µ∈Dξ

µ − E0

|∆|

where E0 = inf ∆ and |∆| is the width of ∆. Then µ̃ is a continuous function which is
differentiable at all points where none of the curves µ(ξ) touches the boundary.

Definition 2 The Dirichlet rotation number is

βΛ(H, ∆) := −rotΛ(
arg µ̃

2π
) .

Lemma 2 If, for some µ ∈ ∆, |S(µ)| > 1 then ∆ contains at most one right Dirichlet value
of Hξ.

Proof: We first remark that the same discussion can be performed for the left Dirichlet values
of Hξ, namely values E for which exist Ψ solving (Hξ − E)Ψ = 0 with Ψ(0) = Ψ(+∞) = 0.
These similarily define locally curves µ∗(ξ) whose first derivative are now strictly positive. They
can’t intersect with any of the curves µ(ξ), because a right Dirichlet value which is at the same
time a left Dirichlet value must be a true eigenvalue of H . Let S∗(µ) and Z∗(µ) be defined as
S(µ) and Z(µ) but for left Dirichlet values. We claim that between two points of S(µ) lies one
point of S∗(µ). This then implies the lemma, because if Dξ contained two points an elementary
geometric consideration would show that the curves defined by right Dirichlet values through
these points necessarily have to intersect a curve defined by left Dirichlet values. To prove our
claim we consider the analogous statement for Z(µ) and Z∗(µ) and let Ψ± be a real solution of
(H0−µ)Ψ = 0 with Ψ±(±∞) = 0. Since µ is not an eigenvalue the Wronskian [Ψ+, Ψ−] which is
always constant does not vanish. Furthermore, if Ψ+(x) = 0 then Ψ−(x) = −[Ψ+, Ψ−]/Ψ′

+(x).
This expression changes sign between two consecutive zeroes of Ψ+ and hence Ψ− must have a
zero in between. 2

Remark 1 Under the hypothesis of the lemma the sum in the definition of µ̃ contains at most
one element. We believe that the result of the lemma is true under all circumstances.

Theorem 3 α(H, E) = β(H, ∆).

Proof: By Lemma 1 α(H, µ) is the Λ-mean of the density of S(µ). Suppose the hypothesis of
the Lemma 2 holds. Then S(µ) can be identified with the set of intersection points between
the constant curve ξ 7→ exp 2πiE−E0

|∆|
and µ̃(ξ). Since µ′(ξ) < 0 the Λ-mean of the density of

these intersection points is minus the rotation number of arg µ̃

2π
.
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Now suppose that S(µ) contains at most one element. Then α(H, µ) = 0. On the other
hand, there can only be finitely many curves defined by right Dirichlet values. Since they in-
tersect the constant curve ξ 7→ exp 2πiµ−E0

|∆|
only once βΛ(H, ∆) must be 0. 2

Remark 1 An even nicer geometric picture arrises if we take into account also the left Dirichlet
values of Hξ for the definition of µ̃. For this purpose redefine µ̃ : R → K by

µ̃(ξ) = exp πi





∑

µ∈Dξ

µ − E0

|∆|
−

∑

µ∈D∗
ξ

µ − E0

|∆|





where Dξ(∆)∗ is the set of left Dirichlet values of Hξ in ∆. Then µ̃ is as well a continuous piece-
wise differentiable function and rotΛ(arg µ̃

2π
) is the same number as before except that it yields

the Λ-mean of the winding per length of the Dirichlet values around a circle which is obtained
from two copies of ∆ by identification of their boundary points. For periodic systems, this
circle can be identified with the homology cycle corresponding to a gap in the complex spectral
curve of H [BBEIM] and so β(H, ∆) is the winding number of the Dirichlet values around it.
This is similar to Hatsugai’s interpretation of the edge Hall conductivity as a winding number
(see [Ha93]). There the role of the parameter ξ is played by the magnetic flux.

3.3 Odd K-gap labels and Dirichlet rotation numbers

We define another type of gap label which is formulated using operators traces and derivations
instead of curves on topological spaces. It has its origin in an odd pairing between K-theory
and cyclic cohomology.

We fix a gap ∆ in the spectrum of H of length |∆| and set E0 = inf(∆). Let P∆ = P∆(Ĥξ)

be the spectral projection of Ĥξ onto the energy interval ∆. Then

Uξ := P∆e
2iπ

Ĥξ−E0
|∆| + 1 − P∆

acts essentially as the unitary of time evolution by time 1
|∆|

on the eigenfunctions of Ĥξ in ∆.
These eigenfunctions are all localised near the edge and therefore is the following expression a
boundary quantity.

Definition 3 The odd K-gap label is

ΠΛ(H, ∆) = − lim
n→∞

1

2iπ|bn − an|

∫ bn

an

Tr[(U∗
ξ − 1)∂ξUξ]dξ

Where Tr is the standard operator trace on L2(R).

Theorem 4 ΠΛ(H, ∆) = βΛ(H, ∆).
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Proof: Note that the rank of P∆ is equal to |Dξ(∆)|, the number of elements in Dξ(∆). Let us
first suppose that this is either 1 or 0 which would be implied under the conditions of Lemma 2.

Since U∗
ξ − 1 = P∆(e2iπ

Ĥξ−E0
|∆| − 1) we can express the trace using the normalised eigenfunctions

Ψξ of Ĥξ to µ(ξ), provided |Dξ(∆)| = 1,

Tr[(U∗
ξ − 1)∂ξUξ] = 〈Ψξ|U

∗
ξ − 1|Ψξ〉〈Ψξ|∂ξUξ|Ψξ〉. (4)

Substituting

〈Ψξ|∂ξUξ|Ψξ〉 = ∂ξ〈Ψξ|Uξ|Ψξ〉 = ∂ξe
2iπ

µ(ξ)−E0
|∆|

in the previous expression we arrive at

Tr[(U∗
ξ − 1)∂ξUξ] = (e−2iπ

µ(ξ)−E0
|∆| − 1)∂ξe

2iπ
µ(ξ)−E0

|∆| .

Since U∗
ξ − 1 = 0 if Dξ(∆) = ∅ we have

ΠΛ(H, ∆) = − lim
n→∞

1

2iπ|bn − an|

∫ bn

an

(µ̃(ξ) − 1)µ̃′(ξ)dξ = −
1

2iπ
Λ(µ̃µ̃′) (5)

which is the expression for βΛ(H, ∆).
If |Dξ| > 1 one has to replace the r.h.s. of (4) by a sum over eigenfunctions of Ĥξ and the

calculation will be similar. 2

3.4 Interpretation as boundary force per unit energy

We assume for simplicity |Dξ| ≤ 1. Then we obtain from (5)

ΠΛ(H, ∆) = − lim
n→∞

1

|bn − an|

∫ bn

an

µ′(ξ)
|Dξ(∆)|

|∆|
dξ .

The r.h.s. is 1
|∆|

times the Λ-mean of the expectation value of the gradient force w.r.t. the

density matrix associated with the egde states in the gap. Since translating Ĥξ in ξ is unitarily
equivalent to translating the position of the boundary, Π can be seen as the force per unit
energy the edge states in the gap of the system exhibit on the boundary [Kel].

4 Hulls and ergodic theorems

We have seen that, under the assumption that the limits exist, αΛ = IDSΛ and αΛ(H, E) =
ΠΛ(H, ∆) for E ∈ ∆, a gap in the spectrum of H . In this section we present some known
results which guarantee the existence of the limit and show its independence of the sequence Λ.
This is achieved by viewing the potential as an element of the topological space underlying a
R-dynamical system with invariant ergodic probability measure so that the result follows from
an ergodic theorem. A second aim of the construction is perhaps more important. It allows for
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a K-theoretic description of the odd and even K-gap labels (justifying the terminology) and is
the natural framework to prove their equality in any dimension.

Given a potential V consider its hull

Ω = {Vξ|ξ ∈ R} ,

which is a compactification of the set of translates of V in the sense of [Jo86, Be92]. The action
of R by translation of the potential extends to an action on Ω by homeomorphisms which we
denote by ω 7→ x ·ω. The elements of Ω may be identified with those real functions (potentials)
which may be obtained as limits of sequences of translates of V . We will write Vω for the
potential corresponding to ω ∈ Ω. If ω0 is the point of Ω corresponding to V then Vξ = V−ξ·ω0.
Then Vy·ω(x) = Vω(x − y) and the family of Hamiltonians Hω = −∂2 + Vω is covariant in
the sense that Hx·ω = U(x)HωU∗(x) were U(x) is the operator of translation by x. The bulk
spectrum is by definition the union of their spectra.

The assumption of the following theorem, namely that Ω carries an R-invariant ergodic
probability measure, can be verified for many situations and related to thermodynamical con-
siderations [BHZ00].

Theorem 5 Suppose that (Ω, R) carries an invariant ergodic probability measure P. Let ∆ be
a gap in the bulk spectrum and E ∈ ∆. Then almost surely (w.r.t. this measure) the limits to
define αΛ(Hω, E) and ΠΛ(Hω, ∆) exist and are independent of Λ and ω ∈ Ω. The almost sure
value of ΠΛ is the P-average

Π(∆) =
1

2iπ

∫

Ω

dP(ω)Tr((U∗
ω − 1)δ⊥Uω)

where (δ⊥f)(ω) = df(t·ω)
dt

∣

∣

∣

t=0
.

Proof: The crucial input is Birkhoff’s ergodic theorem which allows to replace

lim
n→∞

1

|Λn|

∫

Λn

F (x · ω)dx =

∫

Ω

dPF (ω)

for almost all ω and any F ∈ L1(Ω,P). The corresponding construction for the rotation number
α has been carried out in [JM82] for almost periodic potentials and for the more general set up
in [Jo86, Be92]. For ΠΛ the relevant function is F (ω) = Tr((U∗

ω − 1)δ⊥Uω) which leads to the
expression of the almost sure value of ΠΛ. 2

5 K-theoretic interpretation

The dynamical system (Ω, R) does not depend on the details of V , but only on its spatial
structure (or what may be called its long range order). In fact, for systems whose atomic
positions are described by Delone sets there are methods to construct the hull directly from
this set, c.f. [BHZ00, FHK02]. The detailled form of the potential is rather encoded in a
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continuous function v : Ω → R so that Vω(x) = v(−x · ω) is the potential corresponding to ω.
C(Ω) is thus the algebra of continuous potentials for a given spatial structure.

If one combines this algebra with the Weyl-algebra of rapidly decreasing functions of mo-
mentum operators one obtains the observable algebra which is in the continuous category the
C∗-crossed product C(Ω) oϕ R. It is the C∗-closure of the convolution algebra of functions

f : R → C(Ω) with product f1f2(x) =
∫

R
dyf1(y)ϕyf2(x− y) and involution f ∗(x) = ϕxf(−x),

where ϕy(f)(ω) = f(y · ω). It has a faithful family of representations {πω}ω∈Ω on L2(R) by
integral operators,

〈x|πω(f)|y〉 = f(y − x)(−x · ω).

It has the following important property. For each continuous function F : R → C vanishing
at 0 and ∞ there exists an element F̃ ∈ C(Ω) oϕ R such that F (Hω) = πω(F̃ ). Some of the
topological properties of the family of Schrödinger operators {Hω}ω∈Ω are therefore captured
by the topology of the C∗-algebra. The invariant measure P over Ω gives rise to a trace
T : C(Ω) oϕ R → C, T (f) =

∫

Ω
dPf(0).

Theorem 6 ([Be92]) Let E be in a gap of the bulk spectrum and suppose that the potential is
smooth. The almost sure value of IDSΛ(H, E) is IDS(E) := T (P̃E).

We mention that this result is more subtle then just an application of Birkhoff’s theorem and
interpretating the result in C∗-algebraic terms as it needs a Shubin type argument which holds
for smooth potentials, namely

lim
n→∞

1

|Λn|
(Tr(PE(HΛn

) − Tr(χΛn
PE(H))) = 0.

The element P̃E is a projection. As any trace on a C∗-algebra, T depends only on the
homotopy class of P̃E in the set of projections of C(Ω)oϕ R. The even K-group K0(C(Ωoϕ R)
is constructed from homotopy classes of projections and the map on projections P 7→ T (P )
induces a functional on this group, or stated differently, the elements of the K0-group pair with
T . It is therefore that we refer to T (P̃E) as an even K-gap label of the gap.

There is a similar identification of the odd gap label as the result of a functional applied to
the odd K-group of a C∗-algebra. This C∗-algebra is the C∗-algebra of observables on the half
space near 0, the position of the boundary. It turns out convenient to consider also the cases in
which the boundary is at s 6= 0. We therefore consider the space Ω×R with product topology.
This topological space, whose second component denotes the position of the boundary, carries
an action of R by translation of the potential and the boundary (so that their relative position
remains the same). The relevant C∗-algebra is then the crossed product (constructed as above)
C0(Ω×R)oϕ̃R with ϕ̃y(f)(ω, s) = f(y ·ω, s+y). It has a family of representations {πω,s}ω∈Ω,s∈R

on L2(R) by integral operators,

〈x|πω,s(f)|y〉 = f(y − x)(−x · ω, s − x).

It has the following important property. For each continuous function F : R → C vanishing at
0 and ∞ and such that F (Hω) = 0 for all ω there exists an element F̂ ∈ C0(Ω× R) oϕ̃ R such
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that F (Hω,s) = πω,s(F̂ ) where Hω,s is the restriction of Hω to R≤s with Dirichlet boundary
conditions at s.

The product measure of P with the Lebesgue measure is an R-invariant measure on Ω× R

and defines a trace T̂ (f) =
∫

Ω

∫

R
dPdsf(0).

Theorem 7 ([Kel]) The almost sure value of Π(∆) is

ΠΛ(H, ∆) = Π(∆) :=
1

2iπ
T̂ (Û∗ − 1δ⊥Û − 1).

The expression of the theorem depends only on the homotopy class of Û − 1 + 1 in the set of
unitaries of (the unitization of) C0(Ω × R) oϕ̃ R. The odd K-group K1(C0(Ω × R) oϕ̃ R) is

constructed from homotopy classes of unitaries and the map on unitaries U 7→ T̂ ((U∗−1)δ⊥U)

induces a functional on this group. It is therefore that we refer to 1
2iπ

T̂ (Û∗ − 1δ⊥Û − 1) as an
odd gap label of the gap.

The proof of the following theorem is based on the topology of the above C∗-algebras.

Theorem 8 ([Kel]) T (P̃E) = 1
2iπ

T̂ (Û∗ − 1δ⊥Û − 1). In other words, IDS(E) = Π(∆).

6 Conclusion and final remarks

We have discussed four quantities which serve as gap-labels for one-dimensional Schrödinger
operators. They are all equal but their definition relies on different concepts. The Johnson-
Moser rotation number α measures the mean oscillation of a single solution. The Dirichlet
rotation number β counts the mean winding of the eigenvalues of the halfsided operators around
a circle compactification of the gap. Π and IDS are operator algebraic expressions with concrete
physical interpretations, the boundary force per energy and the integrated density of states.
Whereas the identities α = β = Π are rather elementary, their identity with IDS is based
on a fundamental theorem, the Sturm-Liouville theorem. We tend to think therefore of Π
as the natural operator algebraic formulation of the Johnson-Moser rotation number and of
Theorem 8 as an operator analog of the Sturm-Liouville theorem. The advantage is that Π,
IDS and Theorem 8 generalise naturally to higher dimensions [Kel]. In fact, the expression for
IDS is the same as in (3) if one uses Føllner sequences {Λn}n for Rd. The expression of ΠΛ in
Rd requires a choice of a d−1-dimensional subspace, the boundary, and so Ĥξ is the restriction
of the Schrödinger operator Hξ = −Σj∂

2
j +Vξ, Vξ(x) = V (x+ξed), to the half space Rd−1×R≤0

with Dirichlet boundary conditions. Then, for a single operator

ΠΛ = − lim
n→∞

1

|Σn|(bn − an)

∫ bn

an

Tr((U∗
ξ,Σn

− 1)∂ξUξ,Σn
)dξ ,

Uξ,Σn
= P∆(Ĥξ,Σn

)e2πi
Ĥξ,Σn

−E0
|∆| + 1 − P∆(Ĥξ,Σn

) ,

Here Σn is a Føllner sequence for the boundary and Ĥξ,Σn
is the restriction of Hξ to Σn × R≤0

with Dirichlet boundary conditions. We do not know of a direct link between this expression
and the generalisation proposed by Johnson [Jo91] for odd-dimensional systems.
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