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Abstract

The stochastic 2D Navier-Stokes equations on the torus driven by degenerate
noise are studied. We characterize the smallest closed invariant subspace for this
model and show that the dynamics restricted to that subspace is ergodic. In par-
ticular, our results yield a purely geometric characterization of a class of noises
for which the equation is ergodic irp(T?). Unlike in previous works, this class

is independent of the viscosity and the strength of the noise. The two main tools
of our analysis are thasymptotic strong Felleproperty, introduced in this work,

and an approximate integration by parts formula. The first, when combined with
a weak type of irreducibility, is shown to ensure that the dynamics is ergodic.
The second is used to show that the first holds undeiraidnder-type condition.

This requires some interesting non-adapted stochastic analysis.

1 Introduction

In this article, we investigate the ergodic properties of the 2D Navier-Stokes equa-
tions. Recall that the Navier-Stokes equations describe the time evolution of an
incompressible fluid and are given by

ou=vAu+(u-Vu—Vp+¢, divu=0, (1.2)

whereu(z, t) € R? denotes the value of the velocity field at timand position

x, p(x,t) denotes the pressure, afit, t) is an external force field acting on the
fluid. We will consider the case when € T2, the two-dimensional torus. Our
mathematical model for the driving forceis a Gaussian field which is white in
time and colored in space. We are patrticularly interested in the case when only
a few Fourier modes of are non-zero, so that there is a well-defined “injection
scale” L at which energy is pumped into the system. Remember that both the
energy|ul|?> = [ |u(z)|? dz and the enstroph}fV A u||? are invariant under the
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nonlinearity of the 2D Navier-Stokes equations.they are preserved by the flow
of (1.1) if v = 0 and{ = 0).

From a careful study of the nonlinearity (seay.[Ros02] for a survey and
[FIMRO2] for some mathematical results in this field), one expects the enstrophy
to cascade down to smaller and smaller scales, until it reaches a “dissipative scale”
n at which the viscous termAwv dominates the nonlinearity.( V)u in (1.1). This
picture is complemented by that of an inverse cascade of the energy towards larger
and larger scales, until it is dissipated by finite-size effects as it reaches scales of
order one. The physically interesting range of parameters for (1.1), where one
expects to see both cascades and where the behavior of the solutions is dominated
by the nonlinearity, thus corresponds to

l< L t<ny?t. (1.2)

The main assumptions usually made in the physics literature when discussing the
behavior of (1.1) in the turbulent regime are ergodicity and statistical translational
invariance of the stationary state. We give a simple geometric characterization of
a class of forcings for which (1.1) is ergodic, including a forcing that acts only on

4 degrees of freedon® (Fourier modes). This characterization is independent of
the viscosity and is shown to be sharp in a certain sense. In particular, it covers
the range of parameters (1.2). Since we show that the invariant measure for (1.1)
is unigue, its translational invariance follows immediately from the translational
invariance of the equations.

From the mathematical point of view, the ergodic properties for infinite-dimen-
sional systems are a field that has been intensely studied over the past two decades
butis yetin its infancy compared to the corresponding theory for finite-dimensional
systems. In particular, there is a gaping lack of results for truly hypoelliptic non-
linear systems, where the noise is transmitted to the relevant degrees of freedom
only through the drift. The present article is a first attempt to close this gap, at least
for the particular case of the 2D Navier-Stokes equations. This particular case (and
some closely related problems) has been an intense subject of study in recent years.
However the results obtained so far require either a non-degenerate forcing on the
“unstable” part of the equation [EMSO01, KS00, BKL0O1, KS01, Mat02b, BKLO02,
Hai02, MY02], or the strong Feller property to hold. The latter was obtained only
when the forcing acts on an infinite number of modes [FM95, Fer97, EHO1, MS03].
The former used a change of measure via Girsanov’s theorem and the pathwise
contractive properties of the dynamics to prove ergodicity. In all of these works,
the noise was sufficiently non-degenerate to allow in a way for an adapted analysis
(see Section 4.5 below for the meaning of “adapted” in this context).

We give a fairly complete analysis of the conditions needed to ensure the er-
godicity of the two dimensional Navier-Stokes equations. To do so, we employ
information on the structure of the nonlinearity from [EMO01] which was developed
there to prove ergodicity of the finite dimensional Galerkin approximations under
conditions on the forcing similar to this paper. However, our approach to the full
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PDE is necessarily different and informed by the pathwise contractive properties
and high/low mode splitting explained in the stochastic setting in [Mat98, Mat99]
and the ideas of determining modes, inertial manifolds, and invariant subspaces in
general from the deterministic PDE literature (cf. [FP67, CF88]). More directly,
this paper builds on the use of the high/low splitting to prove ergodicity as first
accomplished contemporaneously in [BKLO1, EMS01, KS00] in the “essentially
elliptic” setting (see section 4.5). In particular, this paper is the culmination of a
sequence of papers by the authors and their collaborators [Mat98, Mat99, EHO1,
EMSO01, Mat02b, Hai02, Mat03] using these and related ideas to prove ergodicity.
Yet, this is the first to prove ergodicity of a stochastic PDE in a hypoelliptic setting
under conditions which compare favorably to those under which similar theorems
are proven for finite dimensional stochastic differential equations. One of the keys
to accomplishing this is a recent result from [MP04] on the regularity of the Malli-
avin matrix in this setting.

One of the main technical contributions of the present work is to provide an
infinitesimal replacement for Girsanov’'s theorem in the infinite dimensional non-
adapted setting which the application of these ideas to the fully hypoelliptic setting
seems to require. Another of the principal technical contributions is to observe
that the strong Feller property is neither essential nor natural for the study of er-
godicity in dissipative infinite-dimensional systems and to provide an alternative.
We define instead a weakasymptotic strong Felleproperty which is satisfied
by the system under consideration and is sufficient to give ergodicity. In many
dissipative systems, including the stochastic Navier-Stokes equations, only a finite
number of modes are unstable. Conceivably, these systems are ergodic even if the
noise is transmitted only to those unstable modes rather than to the whole system.
The asymptotic strong Feller property captures this idea. It is sensitive to both
the regularization of the transition densities due to both probabilistic and dynamics
mechanisms.

This paper is organized as follows. In Section 2 the precise mathematical for-
mulation of the problem and the main results for the stochastic Navier-Stokes equa-
tions are given. In Section 3 we define the asymptotic strong Feller property and
prove in Theorem 3.15 that, together with an irreducibility property it implies er-
godicity of the system. This is the equivalent of Doob’s theorem in our context.
The main technical results are given in Section 4, where we show how to apply the
abstract results to our problem. Although this section is written with the stochas-
tic Navier-Stokes equations in mind, most of the corresponding results hold for a
much wider class of stochastic PDEs with polynomial nonlinearities.
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2 Setup and Main Results

Consider the two-dimensional, incompressible Navier-Stokes equations on the to-
rusT? = [—, 7]? driven by a degenerate noise. Since the velocity and vorticity
formulations are equivalent in this setting, we choose to use the vorticity equation
as this simplifies the exposition. Fara divergence-free velocity field, we define

the vorticityw by w = V A u = 0su1 — 01us. Note thatu can be recovered from

w and the conditiorV - v = 0. With these notations the vorticity formulation for

the stochastic Navier-Stokes equations is as follows:

dw = vAwdt + B(Kw,w) dt + Q dW (t) , (2.2)

where A is the Laplacian with periodic boundary conditions a¢, w) = (u -

V)w, the usual Navier-Stokes nonlinearity. The symall¥/ (t) denotes a Gaus-
sian noise process which is white in time and whose spatial correlation structure
will be described later. The operat&r is defined in Fourier space byC{v), =
—iwik™ /|| k||?, where €1, ko)t = (k2, —k1). By wy, we mean the scalar product

of w with 7! exp(k - x). It has the property that the divergencekab vanishes

and thatw = V A (Kw). Unless otherwise stated, we consider (2.1) as an equation
in H = L, the space of real-valued square-integrable functions on the torus with
vanishing mean. Before we go on to describe the noise pr@gdssit is instruc-

tive to write down the two-dimensional Navier-Stokes equations (without noise) in
Fourier space:

. ) . 1 1
JjHi=k

From (2.2), we see clearly that any closed subspag¢égganned by Fourier modes
corresponding to a subgroup ot is invariant under the dynamics. In other words,
if the initial condition has a certain type of periodicity, it will be retained by the
solution for all times.

In order to describe the noisg dWW (t), we start by introducing a convenient
way to index the Fourier basis &f. We writez? \ {(0,0)} = Z% U Z?2, where

Z3 = {(k1, ko) € Z* | ke > 0} U {(k1,0) € Z* | k1 > 0},
Z2 = {(k1,ko) €2%| —k €22},

(note thatZi is essentially the upper half-plane) and set iar Z2 \ {(0,0)},

[ sinGox) ifkeZ?,
fele) = cosf - x) if keZz2.

We also fix a set

Zo={kn|n=1,...,m} c Z%\ {(0,0)}, (2.3)
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which encodes the geometry of the driving noise. TheZewill correspond to
the set of driven modes of the equation (2.1).

The process3V (t) is anm-dimensional Wiener process on a probability space
(2, F,P). For definiteness, we choo$kto be the Wiener spad& ([0, oc), R™),
W the canonical process, aRdhe Wiener measure. We denote expectations with
respect tdP by E and defineF; to be thes-algebra generated by the increments of
W up to timet. We also denote bye,, } the canonical basis &™. The linear map
Q : R™ — His given byQe,, = ¢, fx,, Where they, are some strictly positive
numbers, and the wavenumbeéis are given by the elements &,. With these
definitions,QW is an’H-valued Wiener process. We also denote the average rate
at which energy is injected into our system&ly= tr QQ* = > q2.

We assume that the s&p is symmetricj.e.thatifk € Z,, then—k € Z;. This
is not a strong restriction and is made only to simplify the statements of our results.
It also helps to avoid the possible confusion arising from the slightly non-standard
definition of the basig}. This assumption always holds for example if the noise
process)W is taken to be translation invariant. In fact, Theorem 2.1 below holds
for non-symmetric setg) if one replacesZ, by its symmetric part.

It is well-known [Fla94, MR] that (2.1) defines a stochastic flétv By a
stochastic flow, we mean a family of continuous méps C([0,{]; R™)xH — H
such thatw; = &.(W, wg) is the solution to (2.1) with initial conditiom, and
noiseW. Hence, its transition semigroup, given by Prp(wp) = Ep(wy) is
Feller. Hereyp denotes a bounded measurable function ff@nto R and we use
the notationE,,, for expectations with respect to solutions to (2.1) with initial
conditionwg. Recall that annvariant measurdor (2.1) is a probability measure
lx ONn 'H such thatP; u,. = p., whereP; is the semigroup on measures dual
to P;. While the existence of an invariant measure for (2.1) can be proved by
“soft” techniques using the regularizing and dissipativity properties of the flow
[CruB9, Fla94], showing its uniqueness is a challenging problem that requires a
detailed analysis of the nonlinearity. The importance of showing the uniqueness of
14 1S illustrated by the fact that it implies

T—o00

T
im € /0 () dt = /H () ()

for all bounded continuous functiogsand all initial conditionawy € H. It thus

gives some mathematical ground to #rgodic assumptiomsually made in the
physics literature when discussing the qualitative behavior of (2.1). The main re-
sults of this article are summarized by the following theorem:

Theorem 2.1 Let 2 satisfy the following two assumptions:
Al There exist at least two elementsdg with different Euclidean norms.
A2 Integer linear combinations of elements&f generateZ?.

Then, (2.1) has a unique invariant measuré4n
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The proof of Theorem 2.1 is given by combining Corollary 4.2 with Proposi-
tion 4.4 below. A partial converse of this ergodicity result is given by the following
theorem, which is an immediate consequence of Proposition 4.4.

Theorem 2.2 There are two qualitatively different ways in which the hypotheses of
Theorem 2.1 can fail. In each case there is a unique invariant measure supported
onH, the smallest closed linear subspacég-btvhich is invariant under (2.1).

e Inthe first case the elements&f are all collinear or of the same Euclidean
length. Ther?{ is the finite-dimensional space spanned{y |k € 2y},
and the dynamics restricted g is that of an Ornstein-Uhlenbeck process.

e In the second case lgf be the smallest subgroup @° containing Z;.
ThenH is the space spanned Hyfi. |k € G\ {(0,0)}}. Letki, ko be
two generators foiG and definey; = 2rk;/|k;|2, thenH is the space of
functions that are periodic with respect to the translatiengandv,.

Remark 2.3 That’H constructed above is invariant is clear; that it is the smallest
invariant subspace follows from the fact that the transition probabilities of (2.1)
have a density with respect to the Lebesgue measure when projected onto any
finite-dimensional subspace #f, see [MP04].

By Theorem 2.2 if the conditions of Theorem 2.1 are not satisfied then one
of the modes with lowest wavenumber is#*. In fact eitherf; o) L H or
fa.1) L H. On the other hand for sufficiently small valuesiofhe low modes of
(2.1) are expected to be linearly unstable [Fri95]. If this is the case, a solution to
(2.1) starting irf{-- will not converge toH and (2.1) therefore has several distinct
invariant measures oH. It is however known that the invariant measure is unique
if the viscosity is sufficiently high, see [Mat99]. (At high viscosity, all modes are
linearly stable. See [Mat03] for a more streamlined presentation.)

Example 2.4 The setZ, = {(1,0),(-1,0), (1,1), (-1, —1)} satisfies the assump-
tions of Theorem 2.1. Therefore, (2.1) with noise given by

QW (t,z) = Wi(t) sinzy + Wa(t) coszy + Wi(t) sin(ry + x2)
+ Wiy(t) cosfer + 2) ,

has a unique invariant measureHffor every value of the viscosity > 0.

Example 2.5 Take 2y = {(1,0),(—1,0),(0,1),(0,—1)} whose elements are of
lengthl. Therefore, (2.1) with noise given by

QW (t,x) = Wi(t) sinxzy + Wa(t) coszy, + Wi(t) Ssinxy + Wy(t) cosz, ,

reduces to an Ornstein-Uhlenbeck process on the space spanned bycsisr,
sinzsy, and coss.
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Example 2.6 Take Zy = {(2,0), (-—2,0), (2,2), (-2, —2)}, which corresponds to
case 2 of Theorem 2.2 withgenerated by 2) and ¢, 0). In this caseH is the set

of functions that are-periodic in both arguments. Via the change of variables

x/2, one can easily see from Theorem 2.1 that (2.1) then has a unique invariant
measure ofH (but not necessarily of).

3 An Abstract Ergodic Result

We start by proving an abstract ergodic result, which lays the foundations of the
present work. Recall that a Markov transition semigr@gs said to bestrong
Feller at timet if P, is continuous for every bounded measurable funcgiortt

is a well-known and much used fact that the strong Feller property, combined with
some irreducibility of the transition probabilities implies the uniqueness of the in-
variant measure foP; [DPZ96, Theorem 4.2.1]. P, is generated by a diffusion
with smooth coefficients oR™ on a finite-dimensional manifold, ¢tmander’s
theorem [Hr67, Hor85] provides us with an efficient (and sharp if the coefficients
are analytic) criteria for the strong Feller property. Unfortunately, no equivalent
theorem exists ifP; is generated by a diffusion in an infinite-dimensional space,
where the strong Feller property seems to be much“rarer”. If the covariance of
the noise is non-degeneratee(the diffusion is elliptic in some sense), the strong
Feller property can often be recovered by means of the Bismut-Elworthy-Li for-
mula [EL94]. The only result to our knowledge that shows the strong Feller prop-
erty for an infinite-dimensional diffusion where the covariance of the noise does
not have a dense range is given in [EHO1], but it still requires the forcing to act in
a non-degenerate way on a subspace of finite codimension.

3.1 Preliminary definitions

Let X be a Polishi(e.complete, separable, metrizable) space. Recall the¢ado-
metricfor X is a continuous functiod : X2 — R such thati(z, z) = 0 and such
that the triangle inequality is satisfied. We say that a pseudo-maétiis larger
thands if dyi(x,y) > da(x,y) for all (xz,y) € X2

Definition 3.1 Let {d,, }>°, be an increasing sequence of (pseudo-)metrics on a
Polish spaceY. If lim, . d,(z,y) = 1 for all z # y, then{d,} is atotally
separating system of (pseudo-)metfios.t’.

Let us give a few representative examples.

Example 3.2 Let{a, } be an increasing sequenceRrsuch that lim ., a,, = oc.
Then,{d,,} is atotally separating system of (pseudo-)metfasY in the following
three cases.
1. Let d be an arbitrary continuous metric obi and setd,(r,y) = 1 A
and(xv y)
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2. Let X = Cy(R) be the space of continuous functions Rnvanishing at
infinity and setd,,(x, y) = 1 A SUR.¢[—_y, 5] @n|T(8) — y(3)|-
3. Letx = (% and setd,(z,y) = 1 A an > pp |2k — yrl*

Given a pseudo-metrié, we define the following seminorm on the setdf
Lipschitz continuous functions froit' to R:

_ lo(x) — ()]
lella = xztég e (3.1)

This in turn defines a dual seminorm on the space of finite signed Borel measures
on X with vanishing integral by

Ivlla = sup [ o()v(de). (3.2)
lplla=1 /2

Givenyq andpue, two positive finite Borel measures dnwith equal mass, we also
denote by# (11, 12) the set of positive measures @it with marginalsy; and s
and we define

s = palla= _jnf | de,y) utdo.dy) (33)
HEE (u1,12) J x2

The following lemma is an easy consequence of the Monge-Kantorovich duality,

seee.g.[Kan42, Kan48, AN87], and shows that in most cases these two natural

notions of distance can be used interchangeably.

Lemma 3.3 Letd be a continuous pseudo-metric on a Polish spacand lety;
and pe be two positive measures ¥l with equal mass. Then, one hég; —

palla = llpn — palla-

Proof. This result is well-known if &, d) is a separable metric space, see for ex-
ample [Rac91] for a detailed discussion on many of its variants. If we define an
equivalence relation o’ by x ~ y < d(z,y) = 0 and setX; = X' /~, thend

is well-defined onX,; and (¥, d) is a separable metric space (although it may no
longer be complete). Defining : X — X; by w(x) = [«], the result follows from

the Monge-Kantorovich duality itk; and the fact that both sides of (3.3) do not
change if the measureg are replaced by* ;. O

Recall that the total variation norm of a finite signed meaguoa X’ is given
by ||ulltv = %(;ﬁ(?() + 1~ (X)), wherey = p* — pu~ is the Jordan decomposition
of u. The next result is crucial to the approach taken in this paper.

Lemma 3.4 Let {d,,} be a bounded and increasing family of continuous pseudo-
metrics on a Polish spac& and definel(x, y) = lim,,_. d.(x, y). Then, one has
iMoo |11 — p2la, = ||pe1 — pal|a for any two positive measurgg and y; with
equal mass.
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Proof. The limit exists since the sequence is bounded and increasing by assump-
tion, so let us denote this limit b¥. Itis clear from (3.3) thafj 1 — p2|lq > L, so

it remains to show the converse bound. Lgtbe a measure i#' (1, u2) that real-

izes (3.3) for the distancg,. (Such a measure is shown to exist in [Rac91].) The
sequenced i, } is tight on X2 since its marginals are constant, so we can extract a
weakly converging subsequence. Denote:hythe limiting measure. Sincé, is
continuous, the weak convergence implies that

/ dn(z,y) poo(dx,dy) < L, ¥Yn>0.
X2

It follows from the dominated convergence theorem g@td(x, Y) poo(dz, dy) <
L, which concludes the proof. 0

Corollary 3.5 LetX’ be a Polish space and I§t/,, } be a totally separating system
of pseudo-metrics fakt'. Then,||u1 — pel||tv = liMp—oo ||11 — p2||4,, for any two
positive measuresg; and us with equal mass o#’.

Proof. It suffices to notice thalti; — pal|tv = Inf e uo) t({(z,y) : © # y}).
|

3.2 Asymptotic Strong Feller
Before we define the asymptotic strong Feller property, recall that:

Definition 3.6 A Markov transition semigroup on a Polish spatds said to be
strong Fellerat timet if P,y is continuous for every bounded measurable function
p: X —R.

Note that if the transition probabilitieB; (x, - ) are continuous in the total vari-
ation topology, therP, is strong Feller at time.

Recall also that the support of a probability measurdenoted by suppd, is
the intersection of all closed sets of measureA useful characterization of the
support of a measure is given by

Lemma 3.7 A pointz € suppf) if and only if u(U) > 0 for every open sel/
containingz. O

It is well-known that if a Markov transition semigrodp is strong Feller and
u1 and po are two distinct ergodic invariant measures far(i.e. 1 and o are
mutually singular), then sugp Nsuppue = ¢. (This can be seeag.by the same
argument as in [DPZ96, Prop. 4.1.1].) In this section, we show that this property
still holds if the strong Feller property is replaced by the following property, where
we denote by/, the collection of all open sets containing



AN ABSTRACT ERGODICRESULT 10

Definition 3.8 A Markov transition semigrouf; on a Polish spacd’ is called
asymptotically strong Felleat « if there exists a totally separating system of pseu-
do-metrics{d, } for X and a sequendg, > 0 such that

Jnf lim supsup|[Pt,(z, -) = Pt (Y, lla, =0, (3.4)

Uz n—oo yeU

It is called asymptotically strong Feller if this property holds at every X

Remark 3.9 If B(x,~) denotes the open ball of radiyscentered at: in some
metric defining the topology ot’, then it is immediate that (3.4) is equivalent to

lim limsup sup [P, (z, ) = Pe,.(y, Mla, =0
170 n—oo yeB(z,)
One way of seeing the connection to the strong Feller property is to recall that
a standard criteria foP, to be strong Feller is given by [DPZ96, Lem. 7.1.5]:

Proposition 3.10 A semigrou@P; on a Hilbert spaceH is strong Feller if, for all
def

¢ : H — Rwith [[¢]|c = sup,cy |¢(x)| and || V||« finite one has

[VPip()| < C(l|zDllelloo

whereC : Ry — R is a fixed non-decreasing function. O

The following lemma provides a similar criteria for the asymptotic strong Feller
property:

Proposition 3.11 Lett,, andd,, be two positive sequences wWjth, } non-decreasing
and{¢,} converging to zero. A semigrodp on a Hilbert spaceH is asymptoti-
cally strong Feller if, for allp : H — R with |||/« and||V¢||« finite one has

VP, (@) < C(lzDlelloo + nllVelloo) (3.5)

for all n, whereC' : R, — R is a fixed non-decreasing function.

Proof. Fore > 0, we define orf{ the distancel. (w1, w2) = 1 A e~ Y|wy — wa|,
and we denote by- || the corresponding seminorms on functions and on measures
given by (3.1) and (3.2). It is clear thatdf, is a decreasing sequence converging
to 0, {ds, } is a totally separating system of metrics f@r

It follows immediately from (3.5) that for every &chet differentiable function
¢ from H to R with |||l < 1 one has

[ o) (Petwn, ) = P G, ) < s = wal| Q| v awal) (12
H £

(3.6)
Now take a Lipschitz continuous functianwith ||¢||. < 1. By applying top the
semigroup at timé /m corresponding to a linear Strong Feller diffusiorone
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obtains [Cer99, DPZ96] a sequengg, of Fréchet differentiable approximations
©m With |||l < 1 and such thap,, — ¢ pointwise. Therefore, by the dom-
inated convergence theorem, (3.6) holds for Lipschitz continuous functiams
SO

Pt o1, )~ Pay oz, Ve < o — wall Q| v feal) (14 °2)
Choosings = a,, = /9, we obtain

1P, (w1, -) = Pr, (w2, )la,, < [lwr — w2l|C([Jwr ]| V w2l )1+ an)
which in turn implies thaf, is asymptotically strong Feller sineg, — 0. O

Remark 3.12 If a Markov semigroupP; is asymptotically strong Feller and the
sequence,, in (3.4) can be taken constarnt, (= ¢, for all n), then the transition
probabilitiesP;(x, - ) are continuous in the total variation topology and ti#yss
strong Feller at times > t¢.

Example 3.13 Consider the SDE
dr = —xdt + dW(t), dy = —ydt .

Then, the corresponding Markov semigroup Rhis not strong Feller, but it is
asymptotically strong Feller.

Example 3.14 In infinite dimensions, even a seemingly non-degenerate diffusion
can suffer from a similar problem. Consider the following infinite dimensional
Ornstein-Uhlenbeck procesgz,t) = > u(k,t) exp@kz) written in terms of its
complex Fourier coefficients. We takec T = [—7, 7], k € Z and

di(k,t) = —(1 + |k|P)a(k, t) dt + exp|k|>) dBi(t) (3.7)

where thes;, are independent standard complex Brownian Motions. The Markov
transition densitie®;(z, -) andP.(y, -) are singular for all finite times i — y is

not sufficiently smooth. This implies that the diffusion (3.7}Hn= L*([—, 7]) is
notstrong Feller. However, it can easily be checked that it is asymptotically strong
Feller.

The classical strong Feller property captures well the smoothing due to the ran-
dom effects. In light of these examples, we see that asymptotic strong Feller better
incorporates the pathwise smoothing due to the dynamics. The strong Feller prop-
erty implies that the transition densities starting from nearby points are mutually
absolutely continuous. As the examples show, this is often not true in infinite di-
mensions. Comparing Proposition 3.10 with Proposition 3.11, one sees that the
second term in Proposition 3.11 allows one to capture the progressive smoothing



APPLICATIONS TO THESTOCHASTIC 2D NAVIER-STOKES EQUATIONS 12

in time from the pathwise dynamics. This becomes even clearer when one exam-
ines the proofs of Proposition 4.3 and Proposition 4.11 later in the text. There one
sees that the first term comes from shifting a derivative from the test function to the
Wiener measure and the second is controlled using the pathwise contraction of the
spatial Laplacian in an essential way.

The usefulness of the asymptotic strong Feller property is seen in the following
theorem and is accompanying corollary which are the main results of this section.

Theorem 3.15 Let P, be a Markov semigroup on a Polish spateand lety and
v be two distinct ergodic invariant probability measures 1y If P; is asymptoti-
cally strong Feller atr, thenz ¢ suppu N suppv.

Proof. Using Corollary 3.5, the proof of this result is a simple rewriting of the
proof of the corresponding result for strong Feller semigroups.

For every measurable sdt everyt > 0, and every quasi-metri¢ on X, the
triangle inequality fot| - || implies

1= wlla < 1= mingu(A), v(A)} (1 - max [Pz )~ Pty la) - (3:8)
y,zEA

By the definition of the asymptotic strong Feller property, there exist constants
N > 0 and an open séf containingz such that| P, (z,-) — Ps, (¥, la, < 1/2
for everyn > N and everyy, z € U.

Assume by contradiction that € suppu N suppr and therefore that =
min(u(U), v(U)) > 0. TakingA = U, d = d,, andt = t,, in (3.8), we then get
lp = v|lg, < 1— ¢ foreveryn > N, and thereforé|y — vllv < 1 — $ by
Corollary 3.5, thus leading to a contradiction. O

As an immediate corollary, we have

Corollary 3.16 If P, is an asymptotically strong Feller Markov semigroup and
there exists a point such thatr € suppu for every invariant probability measure
u of Py, then there exists at most one invariant probability measuréfor

4 Applications to the Stochastic 2D Navier-Stokes Equations

To state the general ergodic result for the two-dimensional Navier-Stokes equa-
tions, we begin by looking at the algebraic structure of the Navier-Stokes nonlin-
earity written in Fourier space.

Remember thag; as given in (2.3) denotes the set of forced Fourier modes for
(2.1). In view of Equation 2.2, it is natural to consider the Bgt, defined as the
smallest subset a2 containingZ, and satisfying that for ever§, j € Z., such
that (¢4, j) # 0 and|j| # |¢|, one hasj + ¢ € Z,, (see [EMO1]). Denote b§{
the closed subspace &f spanned by the Fourier basis vectors corresponding to
elements ofZ... Then,H is invariant under the flow defined by (2.1).
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Since we would like to make use of the existing results, we recall the sequence
of subsetsz,, of Z? defined recursively in [MP04] by

zo={t+jliczte 2, awithit, ) £0.1j £10},

as well asZ, = |J,~, Z,. The two setsZ, and Z,, are the same even though
from the definitions we only seg&,, C Z... The other inclusion follows from the
characterization o, given in Proposition 4.4 below.

The following theorem is the principal result of this article.

Theorem 4.1 The transition semigroup oH generated by the solutions to (2.1) is
asymptotically strong Feller.

An almost immediate corollary of Theorem 4.1 is

Corollary 4.2 There exists exactly one invariant probability measure for (2.1) re-
stricted toH.

Proof of Corollary 4.2. The existence of an invariant probability measurdor
(2.1) is a standard result [Fla94, DPZ96, CK97]. By Corollary 3.16 it suffices to
show that the support of every invariant measure contains the el@mné&pplying

Ito’s formula to||w||? yields for every invariant measuyethe a-priori bound

CE&
E / ]2 () < €0 .
H 1%

(See [EMSO01] Lemma B.1.) Therefore, denoting®) the ball of radius cen-
tered a, there exist€ such tha]u(B(C*)) > % for every invariant measuge On
the other hand, [EMO1, Lemma 3.1] shows that, for every 0 there exists a time
T, such that

inf )PTW(w,B(*y)) >0.

weB(C
Therefore,u(B(v)) > 0 for every~ > 0 and every invariant measuye which
implies that0 € suppf:) by Lemma 3.7. O

The crucial ingredient in the proof of Theorem 4.1 is the following result:

Proposition 4.3 For everyn > 0, there exist constant§'’,é > 0 such that for
every Féchet differentiable functiop from H to R one has the bound

IVPre)l| < Cexplllwl*)([[¢llse + [Veollooe™") (4.1)
for everyw € H.

The proof of Proposition 4.3 is the content of Section 4.6 below. Theorem 4.1
then follows from this proposition and from Proposition 3.11 with the choices
t, = n andé, = e . Before we turn to the proof of Proposition 4.3, we charac-
terize Z,, and give an informal introduction to Malliavin calculus adapted to our
framework, followed by a brief discussion on how it relates to the strong Feller

property.
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4.1 The Structure of Z,,

In this section, we give a complete characterization of theZsgt We start by
defining(Z,) as the subset &2\ {(0, 0)} generated by integer linear combinations
of elements ofZ,. With this notation, we have

Proposition 4.4 If there exista;, a2 € Zy such thatla;| # |az| and such that;
anday are not collinear, therZ,, = (2). Otherwise,Z., = 2. In either case,
one always has thaf, = Z.

This also allows us to characterize the main case of interest:

Corollary 4.5 One hasz,, = Z2\ {(0,0)} if and only if the following holds:
1. Integer linear combinations of elements&f generateZ?.
2. There exist at least two elementsdp with non-equal Euclidean norm.

Proof of Proposition 4.4t is clear from the definitions that if the elements&f
are all collinear or of the same Euclidean length, one figs= 2, = Zy. In
the rest of the proof, we assume that there exist two elemgraadas of Z, that
are neither collinear nor of the same length and we show that onghas (Z).
Since it follows from the definitions thaf,, C Z., C (Zy), this shows that
Zoo = Zoo.

Note that the seg., consists exactly of those pointsZt that can be reached
by a walk starting from the origin with steps drawn # and which does not
contain any of the following “forbidden steps”:

Definition 4.6 A step with increment € Z, starting from; € Z? is forbiddenif
either|j| = |¢| or j and/ are collinear.

Ouir first aim is to show that there exisks > 0 such thatZ,, contains every
element of( Z,) with Euclidean norm larger thaR. In order to achieve this, we
start with a few very simple observations.

Lemma 4.7 For everyR, > 0, there exists?; > 0 such that every € (Z;) with
|7] < Ry can be reached from the origin by a path with stepsZin(some steps
may be forbidden) which never exits the ball of radRis 0

Lemma 4.8 There existd. > 0 such that the seE., contains all elements of the
formnia; + neas Withn; andny in Z \ [—L, L].

Proof. Assume without loss of generality thit; | > |az| and that{a;, as) > 0.
ChooseL such thatl{a1,as) > |ai]|?>. By the symmetry o2y, we can replace
(a1, a2) by (—a1, —as), so that we can assume without loss of generalitythat
0. We then make first one step in the directigrstarting from the origin, followed
by n9 steps in the directions. Note that the assumptions we madeagna-, and
ns ensure that none of these steps is forbidden. From there, the condition’
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Figure 1: Construction from the proof of Proposition 4.4.

ensures that we can make as many steps as we want into either the dizgaiion
the direction—a; without any of them being forbidden. O

Denote byZ the set of elements of the form a; + nsas considered in Lem-
ma 4.8. It is clear that there exisig > 0 such that every element {£,) is at
distance less thaR, of an element ofZ. Given this valueRzy, we now fixR; as
given from Lemma 4.7. Let us define the set

A=Z’n{ajlaeR, je Z}U{k|3je Zywith|j| = |k|}),

which has the property that there is no forbidden step starting #bimA. Define
furthermore
B ={j€(20)| jnf [k —j|> R} .

By Lemma 4.7 and the definition @&, every element oB can be reached by a
path from.Z containing no forbidden steps, therefdseC Z.,. On the other hand,
it is easy to see that there exigts> 0 such that for every element gfe (Z,) \ B
with |j| > R, there exists an elemen(j) € Z, and an element(j) € B such
thatj can be reached from(j) with a finite number of steps in the directiafy).
Furthermore, ifR is chosen sufficiently large, none of these steps crodsesd
therefore none of them is forbidden. We have thus shown that there &xist§
such thatz,, contains{j € (Zy) ||j|*> > R}.

In order to help visualizing this construction, Figure 1 shows the typical shapes
of the setsA (dashed lines) an® (gray area), as well as a possible choice @
andk(j), givenj. (The black dots on the intersections of the circles and the lines
making upA depict the elements &;.)

We can (and will from now on) assume thais an integer. The last step in the
proof of Proposition 4.4 is
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Lemma 4.9 Assume that there exists an integer> 1 such thatZ., contains
{7 € (20)|lj|> > R}. ThenZ,, also containgj € (Zy) | |i|*> > R — 1}.

Proof. Assume that the sdtj € (Z)||j|> = R — 1} is non-empty and choose
an elemeny from this set. SinceZ, contains at least two elements that are not
collinear, we can choosk € Z, such thatk is not collinear toj. SinceZ, is
closed under the operatidn— —k, we can assume th4f, k) > 0. Consequently,
one hagj + k|?> > R, and soj + k € Z,, by assumption. The same argument
shows thatj + k|? > |k|? + 1, so the step-k starting fromj + k is not forbidden
and thereforé € Z.. O

This shows thatZ,, = (Z;) and therefore completes the proof of Proposi-
tion 4.4. 0

4.2 Malliavin Calculus and the Navier-Stokes Equations

In this section, we give a brief introduction to some elements of Malliavin calcu-
lus applied to equation (2.1) to help orient the reader and fix notation. We refer
to [MPO04] for a longer introduction in the setting of equation (2.1) and [Nua95,
Bel87] for a more general introduction.
Given av € L7 (R4+,R™), the Malliavin derivative of thé{-valued random
variablew; in the directionv, denotedz"wy, is defined by
P w, = lim O (W + eV, wg) — P(W, wo) ’

e—0 e

where the limit holds almost surely with respect to the Wiener measure and where
we setV(t) = fot v(s) ds. Note that we allow to be random and possibly non-
adapted to the filtration generated by the incremenid of

Defining the symmetrized nonlinearify(w, v) = B(Kw,v) + B(Kv, w), we
use the notatiow ; with s < ¢ for the derivative flow between timesandt, i.e.
for every¢ € H, J, ;£ is the solution of

O Js 1€ = VAT & + Blwy, Js4€) t>s, Js&=E€. (4.2)

Note that we have the important cocycle propefty = J,.;J,  for r € [s,].
Observe tha@®’w; = Ay ;v where the random operatdr, ; : L?([s, t],R™) —
H is given by

t
A37t1}:/ Jr7tQU(T)dT.

To summarize,Jy ;£ is the effect onw; of an infinitesimal perturbation of the ini-
tial condition in the directiorf and A v is the effect onw; of an infinitesimal
perturbation of the Wiener process in the directioVg$) = fos v(r)dr.

Two fundamental facts we will use from Malliavin calculus are embodied in the
following equalities. The first amounts to the chain rule, the second is integration
by parts. For a smooth functian: H — R and a (sufficiently regular) process

(V). 7" w1) = (2" (o(un)) = E () | .. @3
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The stochastic integral appearing in this expression is@imiégral if the process
v is adapted to the filtratioft; generated by the incrementsidf and a Skorokhod
integral otherwise.

We also need the adjoity, : H — L2([s, t], R™) defined by the duality
relation (A5 ,&,v) = (&, Asv), where the first scalar product is iR(Ls, 1], R™)
and the second one is #f. Note that one hasA; ,£)(r) = Q*J; &, whereJ;, is
the adjoint in of .J;. ;.

One of the fundamental objects in the study of hypoelliptic diffusions is the
Malliavin matrix M, ; < A As - A dlimpse of its importance can be seen from
the following. For¢ € H, one sees that

mooet
(MO,tfa f) = Z/ <Js7tQ€i, §>2 ds .
i=170

Hence the quadratic forrV/y +&, £) is zero for a directiorg only if no variation
whatsoever in the Wiener process at times ¢ could cause a variation i, with
a non-zero component in the directién

We also recall that the second derivatiig ; of the flow is the bilinear map
solving

K5 4(€,€) = VAK (€, ) + Blwy, K 1(€,€)) + B(Js2&, Js48)
Ks,s(£>§,) =0.

It follows from the variation of constants formula tht (¢, ') is given by

t
Koo, &) = / e B Jon) dr (4.9)

4.3 Motivating Discussion

Itis instructive to proceed formally pretending thidp ; is invertible as an operator
on’H. This is probably not true for the problem considered here and we will cer-
tainly not attempt to prove it in this article, but the proof presented in Section 4.6
is a modification of the argument in the invertible case and hence it is instructive to
start there.

Settingé; = Jo:&, & can be interpreted as the perturbatiornugfcaused by
a perturbatiorg in the initial condition ofw;. Our goal is to find an infinitesimal
variation in the Wiener pathl’ over the interval (), t] which produces the same
perturbation at time as the shift in the initial condition. We want to choose the
variation which will change the value of the density the least. In other words, we
choose the path with the least action with respect to the metric induced by the
inverse of Malliavin matrix. The least squares solution to this variational problem
is easily seen to be, at least formally= Aj M ¢ wherev € L2([0,#],R™).
Observe that7"w; = Agv = Jo&. Considering the derivative with respect to
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the initial conditionw of the Markov semi-groug; acting on a smooth function
©, we obtain

(VPro(w), €) = Eu (Vo)) o) — Ew (Vi) (1) Z ) (4.5)
t
_E, <<p(wt) / v(s)dW> 1¢llocE

v(s)dWs

were the penultimate estimate follows from the integration by parts formula (4.3).
Since the first and last term in the chain of implications hold for functions which
are simply bounded and measurable, the estimate extends by approximation to that
class ofp. Furthermore since the constzﬁu;lfg v(s)dWs| is independent ap, if
one can show it is finite and bounded independently af 7 with ||£|| = 1, we
have proved thatVP.¢| is bounded and thus th®; is strong Feller in the topol-
ogy of H. Ergodicity then follows from this statement by means of Corollary 3.16.
In particular, the estimate in (4.1) would hold.

In a slightly different language, sineeis the infinitesimal shift in the Wiener
path equivalent to the infinitesimal variation in the initial condit{gimne can write
down, via the Cameron-Martin theorem, the infinitesimal change in the Radon-
Nikodym derivative of the “shifted” measure with respect to the original Wiener
measure. This is not trivial since in order to compute the shifbne uses in-
formation on{ws}se[o4, SO it is in general not adapted to the Wiener process
Ws. This non-adaptedness can be overcome as section 4.8 demonstrates. How-
ever the assumption in the above calculation th&t; is invertible is more seri-
ous. We will overcome this by using the ideas and understanding which begin in
[Mat98, Mat99, EMS01, KS00, BKLO1].

The difficulty in inverting M, ¢ partly lies in our incomplete understanding of
the natural space in which (2.1) lives. The knowledge needed to identify on what
domainl; can be inverted seems equivalent to identifying the correct reference
measure against which to write the transition densities. By “reference measure,”
we mean a replacement for the role of Lebesgue measure from finite dimensional
diffusion theory. This is a very difficult proposition. An alternative was given in the
papers [Mat98, Mat99, KS00, EMS01, BKL0O1, Mat02b, BKL02, Hai02, MY02].
The idea was to use the pathwise contractive properties of the flow at small scales
due to the presence of the spatial Laplacian. Roughly speaking, the system has
finitely many unstable directions and infinitely many stable directions. One can
then use the noise to steer the unstable directions together and let the dynamics
cause the stable directions to contract. This requires the small scales to be enslaved
to the large scales in some sense. A stochastic version of such a determining modes
statement (cf [FP67]) was developed in [Mat98]. Such an approach to prove ergod-
icity requires looking at the entire future teco (or equivalently the entire past) as
the stable dynamics only brings solutions together asymptotically. In the first works
in the continuous time setting [EMS01, Mat02b, BKL02], Girsanov's theorem was
used to bring the unstable directions together completely, [Hai02] demonstrated
the effectiveness of only steering all of the modes together asymptotically. Since
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all of these techniques used Girsanov’s theorem, they required that all of the un-
stable directions be directly forced. This is a type of partial ellipticity assumption,
which we will refer to as “effective ellipticity.” The main achievement of this text

is to remove this restriction. We also make another innovation which simplifies
the argument considerably. We work infinitesimally, employing the linearization
of the solution rather than looking at solutions starting from two different starting
points.

4.4 Preliminary Calculations and Discussion

Throughout this and the following sections we fix once and for all the initial con-
dition wy € H for (2.1) and denote by, the stochastic process solving (2.1)
with initial conditionwy. By E we mean the expectation starting from this initial
condition unless otherwise indicated. Recall also the notajos tr QQ*. The
following lemma provides us with the auxiliary estimates which will be used to
control various terms during the proof of Proposition 4.3.

Lemma 4.10 The solution of the 2D Navier-Stokes equations in the vorticity for-
mulation (2.1) satisfies the following bounds:

1. There exist constants, ng, v > 0, depending only 08, andv, such that

t
eexp(y [ allus|Fdr -t~ ) < Coxpnlunl?) . (46)

for everyt > s > 0 and for everyn < ny. Here and in the sequel, we use
the notation||w||; = || Vw|.

2. There exist constantg, a,y > 0, depending only 08y andv, such that

N
Eexp(n Y wall” = 7¥) < explanwo?), (4.7)
n=0

holds for everyV > 0, everyn < 71, and every initial conditionyy € H.

3. For everyn > 0, there exists a constadt = C'(&y, v,n) > 0 such that the
JacobianJy ; satisfies almost surely

t
ol < exp(n [ sl ds + ) (4.9

for everyt > 0.

4. For everyn > 0 and everyp > 0, there exist€’' = C'(&y, v, n,p) > 0 such
that the Hessian satisfies

E||Ks||P < Cexpn|wol?),

for everys > 0 and everyt € (s, s + 1).
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The proof of Lemma 4.10 is postponed to Appendix A.

We now show how to modify the discussion in Section 4.3 to make use of
the pathwise contractivity on small scales to remove the need for the Malliavin
covariance matrix to be invertible on all &f.

The point is that since the Malliavin matrix is not invertible, we are not able
to construct a € L2([0,77],R™) for a fixed value ofl" that produces the same
infinitesimal shift in the solution as an (arbitrary but fixed) perturbatian the
initial condition. Instead, we will construct@a € L%([0, o0), R™) such that an
infinitesimal shift of the noise in the directianproducesasymptoticalljthe same
effect as an infinitesimal perturbation in the directionin other words, one has
| Jo.+& — Ao tvoy| — 0 ast — oo, wherewp; denotes the restriction af to the
interval [0, t].

Setp; = Jo & — Aotvoy, the residual error for the infinitesimal variation in the
Wiener pathiV given byv. Then we have from (4.3) thepproximatentegration
by parts formula:

(VPip(w), €) = Eu ((V(e(@),€)) = Eu( (Vo)) Jo.€)

E
Eu (Vo)) Ao vo1) + Eu((Ve)widpr)
E

(
w(@%t (w) + Ewl(V)(wior)

=& (et [ o6 AW 6)) + Eul(T o)

t
< el [ o W)+ [ V0lEulnl - (49

This formula should be compared with (4.5). Again if the proceeissnot adapted
to the filtration generated by the increments of the Wiener prodégs, the in-
tegral must be taken to be a Skorokhod integral otherw@éntegration can be
used. Note that the residual error satisfies the equation

Owpr = vApr + B(we, pr) — Qut), po =€, (4.10)

which can be interpreted as a control problem, wheigthe control and|p;| is
the quantity that one wants to drive@o

If we can find av so thatp; — 0 ast — oo andE| [, v(s) dW (s)| < oo then
(4.9) and Proposition 3.11 would imply that is asymptotically strong Feller. A
natural way to accomplish this would be to tak@) = Q'B(wy, pt), S0 that
dpr = vAp, and hencep, — 0 ast — oo. However for this to make sense
it would require thatB(wy, p;) takes values in the range ¢f. If the number of
Brownian motionsm is finite this is impossible. Even ifh = oo, this is still a
delicate requirement which severely limits the range of applicability of the results
obtained (see [FM95, Fer97, MS03]).

To overcome these difficulties, one needs to better incorporate the pathwise
smoothing which the dynamics possesses at small scales. Though our ultimate
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goal is to prove Theorem 4.1, which covers (2.1) in a fundamentally hypoelliptic
setting, we begin with what might be called the “essentially elliptic” setting. This
allows us to outline the ideas in a simpler setting.

4.5 Essentially Elliptic Setting

To help to clarify the techniques used in the sections which follow and to demon-
strate their applications, we sketch the proof of the following proposition which
captures the main results of the earlier works on ergodicity, translated into the
framework of the present paper.

Proposition 4.11 Let P, denote the semigroup generated by the solutions to (2.1)
onH. There exists aV, = N,(&,v) such that ifZ, contains{k € Z? , 0 <
|k| < N.}, then for anyp > 0 there exist positive constantsind~y so that

[VPip(w)] < cexplllw]®) (el + Vel ) -

This result translates the ideas in [EMSO01, Mat02b, Hai02] to our present setting.
(See also [Mat03] for more discussion.) The result does differ from the previous
analysis in that it proceeds infinitesimally. However, both approaches lead to prov-
ing the system has a unigue ergodic invariant measure.

The condition on the range @) can be understood as a type of “effective el-
lipticity.” We will see that the dynamics is contractive for directions orthogonal
to the range of). Hence if the noise smooths in these directions, the dynamics
will smooth in the other directions. What directions are contracting depends fun-
damentally on a scale set by the balance betwgeandv (see [EMS01, Mat03]).
Proposition 4.3 holds given a minimal non degeneracy condition independent of
the viscosityv, while Proposition 4.11 requires a non-degeneracy condition which
depends om.

Proof of Proposition 4.11Let 7, be the orthogonal projection onto the span of
{fr : |[k| > N} andm, = 1 — m,. We will fix N presently; however, we will
proceed assumingi, & rH C Range()) and thatm,Q is invertible onH,.
By (4.10) we therefore have full control on the evolutionmgp; by choosingv
appropriately. This allows for an “adapted” approach which does not require the
controlv to use information about the future increments of the noise prdéess

Our approach is to first define a procegswith the property thatr,(; is 0
after a finite time and,(; evolves according to the linearized evolution, and then
choosev such thatp; = ;. Sincern,(; = 0 after some time and the linearized
evolution contracts the high modes exponentially, we readily obtain the required
bounds on moments gf. One can in fact pick any dynamics which are convenient
for the modes which are directly forced. In the case when all of the modes are
forced, the choic€, = (1 — t/T).Jy £ for t € [0,T] produces the well-known
Bismut-Elworthy-Li formula [EL94]. However, this formula cannot be applied in
the present setting as all of the modes are not necessarily forced.
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For¢ € H with ||£]| = 1, define¢; by

1 G
2 || 7G|

(With the convention that/0 = 0.) Set(} = m,¢; and(f = m,(;. We define the
infinitesimal perturbation by

0iGt = +vATRG + 7Thé(wm ), G=¢. (4.11)

¢
2|1l
Becausel; € Hy, Q, ' F; is well defined. It is clear from (4.10) and (4.12) that
p: and ¢, satisfy the same equation, so that indgged= ¢;. Since(/ satisfies
ANCE? = —1I¢ |, one hag|¢f]| < [I¢5I = |1€]] = 1. Furthermore, for any initial
conditionwg and any¢ with ||¢]| = 1, one hag|¢/ || = 0 for ¢ > 2. By calculations
similar to those in Appendix A, there exists a constargo that for any; > 0

() =Q'F,, Fi= + VA( + meBwe, G) - (4.12)

C C
OGP < = (w2 = g =l ) I + e 166

Hence,

C t
It < 1HIPexp (= [19% = S5 et [ s
n 0

C t 2
_ 2_ > _ 2 2
+ Cexp( [Z/N V772} [t 2] + 77/0 |]wr\|1dr> /0 |ws|7ds .

By Lemma 4.10, for any > 0 andp > 1 there exist positive constanfsand-~y so
that for all vV sufficiently large

E”Ctth <Oo(l+ HC(f]L”p)enllwoll%*Vt — chnllwoll%*vt ) (4.13)

It remains to get control over the size of the perturbatiorsincev is adapted to
the Wiener path,

(5] tv(s)dW(s))f < [Epera<c [Eras.

Now since||m;B(u, w)|| < C|lul||Jw||, ||| < 1 and||¢f|| = 0fort > 2, we see
from (4.12) that there exists@ = C(N) such that for alk > 0

1/2
ENF2 < C(1aay + Eluws'EIC)

By using (4.13) withp = 4, and picking/V sufficiently large, this implies that for
anyn > 0 there is a constartt' such that

E‘/OOO w(s) dW(s)‘ < Cexp(n|lwol]?) . (4.14)

Plugging (4.13) and (4.14) into (4.9), the result follows. O
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4.6 Truly Hypoelliptic Setting: Proof of Proposition 4.3

We now turn to the truly hypoelliptic setting. Unlike in the previous section, we
allow for unstable directions which are not directly forced by the noise. However,
Proposition 4.4 shows that the randomness can reach all of the unstable modes of
interest,i.e. those inH. In order to show (4.1), we fix from now oh € H with
€] = 1 and we obtain bounds ofVP,,p(w), ) that are independent &f

The basic structure of the argument is the same as in the preceding section on
the essentially elliptic setting. We will construct an infinitesimal perturbation of the
Wiener path over the time interval [t] to approximately match the effect on the
solutionw, of an infinitesimal perturbation of the initial condition in an arbitrary
direction¢ € H.

However, since not all of the unstable directions are in the range, ofe
can no longer infinitesimally correct the effect of the perturbation in the low mode
space. We rather proceed in a way similar to the start of section 4.3. However,
since the Malliavin matrix is not invertible, we will regularize it and thus construct
av which compensates for the perturbatiponly asymptotically ag — oco. Our
construction produces@awhich isnot adaptedo the Brownian filtration, which
complicates a little bit the calculations analogous to (4.14). A more fundamental
difficulty is that the Malliavin matrix is not invertible on any space which is easily
identifiable or manageable, certainly not di IHence, the way of constructing
is not immediately obvious.

The main idea for the construction ofis to work with a regularized version
Z\?s,t g M, + 8 of the Malliavin matrix M ;, for some very small parameter
0 to be determined later. The resultin\\A(f*1 will be an inverse “up to a scale”
depending orB. To be more precise, define for integer values.dhe following
objects:
M, =A A* M, =08+ M, .

n<n !

I, =J

J,=J ot

n,n+% !

Ay = An,n—&—% !

We will then work with a perturbation which is given by0 on all intervals of the

type [n + %, n + 1], and byw,, € L*([n,n + %], R™) on the remaining intervals.
We define the infinitesimal variatian, by

on =AM pn (4.15)

where we denote as before by the residual of the infinitesimal displacement
at timen, due to the perturbation in the initial condition, which has not yet been
compensated by, i.e. p,, = Jo n& — Ao nvo,n. From now on, we will make a slight
abuse of notation and writg, for the perturbation of the Wiener path an [, + %]
and its extension (b§) to the interval b, n + 1].

We claim that it follows from (4.15) that,, is given recursively by

Pt = JnBM Tpn (4.16)
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with pp = £. To see the claim observe that (4.16) impligs,+10, = jnjnpn =
JnAnvn, + pne1. Using this and the definitions of the operators involved, it is
straightforward to see that indeed

N-1 N-1
AO,NUO,N = Z J(n+1),NjnAnUn = Z (Jn,an - J(n+l),an+1)
n=0 n=0
= Jo,N§ — PN -

Thus we see that at tim&, the infinitesimal variation in the Wiener patl »
corresponds to the infinitesimal perturbation in the initial condigioip to an error
PN -

It therefore remains to show that this choicevdfias desirable properties. In
particular we need to demonstrate properties similar to (4.13) and (4.14). The
analogous statements are given by the next two propositions whose proofs will be
the content of sections 4.7 and 4.8. The first relies heavily on the results obtained
in [MPO4].

Proposition 4.12 For anyn > 0, there exist constan{$ > 0 andC > 0 such that

C expllwol|*)

Ellpw |0 < ZZEIOE

(4.17)

holds for everyV > 0.

This proposition shows that we can construet&hich has the desired effect
of driving the errorp, to zero ag — oo. However for this to be useful, the “cost”
of shifting the noise by (i.e. the norm ofv in the Cameron-Martin space) must
be finite. Since the time horizon is infinite, this is not a trivial requirement. In the
“essentially elliptic” setting, it was demonstrated in (4.14). In the truly hypoelliptic
setting, we obtain

Proposition 4.13 For anyn > 0, there exists a constafit so that

2 / o W (s)| < g“’ (i(Eupnul%%) 2 (4.18)
0

n=0

(Note that the powet0 in this expression is arbitrary and can be brought as close
to 2 as one wishes.)

Plugging these estimates into (4.9), we obtain Proposition 4.3.

4.7 Controlling the Error: Proof of Proposition 4.12

Before proving Proposition 4.12, we state the following lemma, which summarizes
the effect of our control on the perturbation and shall be proved at the end of this
section.
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Lemma 4.14 For every two constants,n > 0 and everyp > 1, there exists a
constant3, > 0 such that

2
E(lpn+1l7 | Fa) < el o, |17

holds almost surely whenevgr< gy.
Proof of Proposition 4.12Define

o lpna]
n — )
[lon |70

with the convention tha€’,, = 0 if p, = 0. Note that sincé|py| = 1, one has
ol = Hfz\’zl C,. We begin by establishing some propertiegfand then use
them to prove the proposition.

Note thatl| 30 1|| < 1 and so, by (4.8) and (4.16), for eveyy> 0 there exists
a constant,, > 0 such that
n+1

lwslds + )
(4.19)

almost surely. Note that this bound is independent.oNext, for given values of
nandR > 0, we define

Co < BN 10 < )01 < exe( |

n

CnR:

)

e if w,|? > 2R,
e™C.  otherwise.

Obviously bothC,, andC,, r are F,,.1-measurable. Lemma 4.14 shows that for
everyR > n~!, one can find & > 0 such that

1
E(Ch | Fn) < 5 amostsurely (4.20)

Note now that (4.19) and the definition 6f, r immediately imply that

n+1

Co < Conexpn [ wlds +llunl + G~ nR) (@21

n

almost surely. This in turn implies that

N N N n+1
[Hc.<TIr+]1 exp<2n/ ws|? ds + 2n|lwa||? + 2C, — 277R>
n=1 n=1 n=1 n

N N
< [IC2n+exp(n Y llwal? +2N(C, — nR))
n=1

n=1
N+1
+exp(4n /0 | ds + 2N(Cy — nR))

Now fix n > 0 (not too large). In light of (4.6) and (4.7), we can then chofise
sufficiently large so that the two last terms satisfy the required bounds. Then, we
chooses sufficiently small so that (4.20) holds and the estimate follows. O
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To prove Lemma 4.14, we will use the following two lemmas. The first is
simply a consequence of the dissipative nature of the equation. Because of the
Laplacian, the small scale perturbations are strongly damped.

Lemma 4.15 For everyp > 1, everyT > 0, and every two constantg n > 0,
there exists an orthogonal projectay onto a finite number of Fourier modes such
that

E[|(1 — mp)Jorl” < vexpn|wol?) (4.22)
El[Jo.r(1 — m)|IP < vexp(n|lwol?) - (4.23)

The proof of the above lemma is postponed to the appendix. The second lemma
is central to the hypoelliptic results in this paper. It is the analog of (4.14) from
the essentially elliptic setting and provides the key to controlling the “low modes”
when they are not directly forced and Girsanov’s theorem cannot be used directly.
This result makes use of the results in [MP04] which contains the heart of the anal-
ysis of the structure of the Malliavin matrix for equation (2.1) in the hypoelliptic
setting.

Lemma 4.16 Fix ¢ € H and define

¢ = BB+ Mo) 1 Jo€ .

Then, for every two constanisn > 0 and every low-mode orthogonal projector
my, there exists a constagt > 0 such that

2
El|meC[[” < el jig |

Remark 4.17 Since one has obviously thét| < ||.Jo€|, this lemma tells us that
applying the operatoB(8 + Mp)~! (with a very small value of3) to a vector

in H either reduces its norm drastically or transfers most of its “mass” into the
high modes (where the cutoff between “high” and “low” modes is arbitrary but
influences the possible choices®f This explains why the contrelis set to0 for

half of the time in Section 4.6: In order to ensure that the norm,ofets really
reduced after one step, we choose the control in such a wagthat M,,) 'J,

is composed by, using the fact embodied in Lemma 4.15 that the Jacobian will
contract the high modes before the low modes start to grow out of control.

Proof of Lemma 4.16For a > 0, let A, denote the evenir,(|| > «||¢|l1. We
also define the random vectors

Ca@) = CWxa. W), Calw) = (W) — Gw), we,

wherew is the chance variable angd, is the characteristic function of a sét It
is clear that )
EllmeCall” < o E|C]IT -
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Using the bounds (4.8) and (4.6) on the Jacobian and the facvihat a bounded
operator fromH; (the Sobolev space of functions with square integrable deriva-
tives) intoH1, we get

_ A y 2
EllmeCall” < o”E[[C|} < o”E[lJog][} < el g, (4.24)

(with n and~ as in the statement of the proposition) for sufficiently smalFrom
now on, we fixa such that (4.24) holds. One has the chain of inequalities
(Cas MoCa) < (C, MoC) < (¢, (Mo + B)C)
= B(Jo&, B(Mo + B)" Jo€) < Bl Joé€]|* -

From Lemma B.1, we furthermore see that, for eyery- 0, there exists a constant
C such that

(4.25)

P((MoCas Ca) < ellCall?) < CeP* explnl|wo|®) ,
holds for everyw, € H and every e (0, 1). Consequently, we have

HC(XHz 1 ~ 3P0 ~Po
P((els > 2) < PG o) < <BlGalf) < e explulmol).

where we made use of (4.25) to get the first inequality. This implies that, for every
p,q > 1, there exists a consta@tsuch that

1Call? o 2 .
E<||fo£!p> < CB7 expll|woll”) - (4.26)

Since||meCall < [|¢all1 @and

1t <y /E(L2l Ve jgper
VT g/ T

it follows from (4.26) and the bound (4.8) on the Jacobian that, by chogsing
sufficiently small, one gets

Y nllwol?
EflmeCall” < e el g|p”. (4.27)

Note thatE||m.(||P = E||m¢(a||P + E||me||P Since only one of the previous two
terms is nonzero for any given realization The claim thus follows from (4.24)
and (4.27). O

Using Lemma 4.15 and Lemma 4.16, we now give the

Proof of Lemma 4.14Define¢, = ﬂﬁ;ljnpn, so thatp, 11 = J,,Cu. It follows
from the definition ofd/,, and the bounds (4.8) and (4.6) on the Jacobian that there
exists a constar such that

214, (12
E(IGall? | 7o) < CezleelC iy P,
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uniformly in 5 > 0. Applying (4.23) to this bound yields the existence of a pro-
jectorm, on a finite number of Fourier modes such that

E([Jn(1 = m)Call? | F) < el p, |17 .

Furthermore, Lemma 4.16 shows that, for an arbitrarily small véluene can
chooses sufficiently small so that

- n 2
E(Imeall? | Fa) < Fe2l ) o |

Applying again thea priori estimates (4.8) and (4.6) on the Jacobian, we see that
one can choosg (and thus?) sufficiently small so that

.~ 2
E(| JumeCall? | Fn) < el o[,
and the result follows. 0

4.8 Cost of the Control : Proof of Proposition 4.13

Since the process  is not adapted to the Wiener procé$¥s), the integral must
be taken to be a Skorokhod integral. We denoteZhy' the Malliavin derivative

of a random variablé” at times (see [Nua95] for definitions). Suppressing the de-
pendence on the initial conditian, we obtain from the definition of the Skorokhod
integral and from the correspondin@ isometry (see.g.[Nua95, p. 39])

(E‘/ON v(s) dW(s)D2 < E(/ON v(s) dW(s))2

N n—l—% n—l—%
< Elvo.n |1+ Z/ / E||Zsvn @) ds dt .
n=0 n n

(Remember that,,(t) = 0 on [n + %,n + 1].) In this expression, the north- ||
denotes the Hilbert-Schmidt norm en x m matrices, so one has

ST moomil
/ / ENDaonP dsdt =3 / E||Ziv, | ds |
n n =17

where the nornj|-|| is in L?([n, n+ 3], R™) and 2 denotes the Malliavin derivative
with respect to théth component of the noise at tile

In order to obtain an explicit expression fatv,,, we start by computing sep-
arately the Malliavin derivatives of the various expressions that enter into its con-
struction. Recall from [Nua95] tha®iw, = stQe; for s < t. It follows from
this and the expression (4.2) for the Jacobian that the Malliavin derivative6f
is given by

WD Ts 1€ = VADLTs 1€ + Blwy, D1J54€) + B(Jri Qe J54E) -
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From the variation of constants formula and the expression (4.4) for the ptagess
we get
. K, (Qe;i, Js &) ifr>s,
D€ = ' , (4.28)
Ks,t(Jr,sQei7§) if r S S.

In the remainder of this section, we will use the convention thatifH; — Hs is
a random linear map between two Hilbert spaces, we denot&dy: H; — Ho
the random linear map defined by

(Z;h = (Zs(Ah), ei) .
With this convention, (4.28) yields immediately

2 ] w=K it (Jngw,Qe;) forr e [n,n+ i1 (4.29)

Similarly, we see from (4.28) and the definition.4f that the mapz: A,, given by
Tt = [ K,y (1, QN(). Q) ds (4.30)

n+i
+ / ’ Kr,n+%(Qh(8)’ Jr,sQei)) ds .

We denote its adjoint byi A% SinceM,, = 3 + A, Ay, we get from the chain
rule
TN =~ M ((Z2A) A5 + A (F243)) M

Sincep,, is F,,-measurable, one hﬁfpn = 0 for » > n. Therefore, combining
the above expressions with the Leibniz rule applied to the definition (4.15) of
yields

Divn = (DA M, Jupn + AL M N (DLT, ) pn
= A M ((Z3A,) A5 + A (2A3) ) M Fupn

SinceM,, = 8 + A, Az, one has the almost sure bounds
I ARM 2 <1, MR A <1, (MR < TR
This immediately yields
1Zivall < 3671 ZiA N Tallllpall + 8721 2i T, onll -

Combining this with (4.30), (4.29), and Lemma 4.10, we obtain, for eyery 0,
the existence of a constafitsuch that

E||Ziv,||2 < CelvI® B=2(E || p, | 10)5 .

Applying Lemma 4.10 to the definition af, we easily get a similar bound for
E|lv,,||?, which then implies the quoted result.
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5 Discussion and Conclusion

Even though results obtained in this work are relatively complete, they still leave a
few questions open.

Do the transition probabilities for (2.1) converge towards the invariant measure
and at which rate? In other words, do the solutions to (2.1) have the mixing prop-
erty? We expect this to be the case and plan to answer this question in a subsequent
publication.

What happens if{ # H and one starts the system with an initial condition
wy € H\ H? If the viscosity is sufficiently large, we know that the component
of w, orthogonal taH will decrease exponentially with time. This is however not
expected to be the case whelis small. In this case, we expect to have (at least)
one invariant measure associated to every (closed) subspam@riant under the
flow.

How does the sequence of invariant measures for (2.1) behave in the limit
v — 07? It is known that under a particular scaling of the noise, this sequence
of measures is tight and every subsequence converges to an invariant measure for
the Euler equation [Kuk04]. However, this scaling produces limiting solutions
with zero dissipation rate so they do not seem appropriate for describing turbulent
behavior. In any case, it would be interesting to have more information on the
qualitative behavior of these measures, in particular on their tails.

Appendix A A Priori Estimates for the Navier-Stokes Equations

Note: The letterC' denotes generic universal constants that do not depend on the
parameters of (2.1). The value 6f can change from one line to the next even
within the same equation.

We define fore € R and forw a smooth function on0f, 27r]? with mean0 the

norm|jw|| by
lwlla = > [k},
k€z2\{0,0}
where of coursev, denotes the Fourier mode with wavenumber Define fur-
thermore Lw), = —iwpk>/||k||?> and B(u,v) = (u - V)v. Then the following
relations are useful (cf. [CF88]):

(B(u,v),w) = —(B(u, w), v) ifV-u=0 (A1)
[(B(w, v), w)| < [lulls, [vlhtsellwlls; 50> 0,308si =1 (A.2)
IKulla = [lulla— (A.3)

2

_93=8 .
lull? < ellu)|2 + 7?5 ||ull2 if 0< o< <yande>0. (Ad)

Before we turn to the proof of Lemma 4.10, we give the following essential
bound on the solutions of (2.1).
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Lemma A.1 There exist constantg > 0, C' > 0, and~ > 0 such that for every
t > 0 and everyy € (0, no], the bound

E exp@y||we||?) < C explre " ||wol?) (A.5)
holds.

Proof. From (A.1) and lbs formula, we get

t t
el — fJewoll? + 20 /0 ooy |12 dr = /0 (wr, QAW () + Eot |

where we sef, = tr QQ*. Using the fact that||w, || > ~||w.||* for somey > 0,
we get

_ & b b
Janl? < e ]+ 2+ / e wy, QAW () — / D |2 dr
0 0

Note now that there exists a constant> 0 such thaty||w,[|? > £[|Q*w:,|?, so
that [Mat02a, Lemma A.1] implies
& K
Pl = ol = 2 > ) < e
v «
The bound (A.5) follows immediately. O

We now turn to the

Proof of Lemma 4.10Point 1. From (A.1) and Id’s formula, we get
t t
JunlP = P+ 20 [ urlFar = [, Q) + Eote - ).
where we sefy = tr QQ*. Multiplying this equation byy on both sides, we get
t
/ @yvlw 1 =2 1Q w|1?) dr = ~llws|? — yllwel® (A.6)
t t
+ ’y/ (w,, QAW (r)) — ~* / |Q*w,||? dr + vE(t — s) .

There existsy, such thaty||Q*w|| < v||w||?, so we will assume tha < g in
the sequel. Exponentiating on both sides, taking expectations, and applying the
Cauchy-Schwartz inequality yields

t
Eexp(/ 71/||wr||%dr) < 7%0=9) /E exp2y||w,]|? .
S

The result now follows immediately from Lemma A.1.
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Point 2. Taking conditional expectations with respect#g _; on the left hand
side of (4.7) and applying Lemma A.1, one has

N N-1
Eexp(n > llwal?) < CEexp(neflwn 12+ > Junl?) -
n=0 n=0

Applying this procedure repeatedly, one obtains

N
Eexp(n Y lwall?) < CN explan|uo|?)
n=0

wherea = Y">°  e~7". This computation is valid, provided is smaller tham,
so the result follows by taking; = 7g/a.

Point 3. We define$; = Jy &, for some, € H. The evolution of; is then given
by (4.2). We thus have for tHE-norm of¢ the equation

NI&® = =20 (IVEN? + 2(B(KCE, wy), &) -
Equation (A.1) yields the existence of a constansuch tha|(B(KCh, w), ()| <

Cllw|l1[|[lI<]l1 /2 for example. By interpolation, we get

C n
20(BUCh, w), ) < VIICHE + o5 K1 + 5 lwllyAl”® (A7)
and therefore
OGN < —v[VE? + S l6l2 + Dlwel2l1E ]2 A.8
H[6e]]” < —v[[VE| +ngyllftll + 5 lwellill&dl” (A.8)

for everyn > 0. This yields (4.8).

Point 4. This bound follows in a rather straightforward way from (A.9). Standard
Sobolev estimates and interpolation inequalities give for the symmetrized nonlin-
earity B the bound

1B, )| < Cl[ully j2llwlh + el llw]l2)
< C(lull 2 |fully?wll + [l w]l?|ull) -

Combining this with the definition (4.4) dk’; ; and bound (A.9) yields fos, ¢
[0,1]

3/2

H|JS,TH1 ||<]8,7“ Y2 dr

t
1Kell <€ [ e
S

< cenln [ funliar).

where we used the integrability ¢f — s|~3/4 in the second step. This concludes
the proof of Lemma 4.10. O
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Proof of Lemma 4.15In order to get (4.22), we show that with the above nota-
tions, one can get bounds ®h||; as well. To achieve this we define, for a constant
e > 0 to be fixed later¢; = [|&||? + te||&]|2. Using (A.8) to bound the derivative
of the first term and combining (A.2) with (A.3) for the other terms, we then get in
a straightforward way

C n
NG < (e —V)||IV&|? + %H&HQ + §Hth%H§tH2
— 2tev||& |3 + 2teCllwil|1[|&ll2)|€ell1 /2

By (A.4), we get

C

2C w7zl 2 < 2vavlwliiRllipll + 2wl 1z 2]
C

< vlIR[I3 + nllwlT]AIE + WllwllflthQ -

this immediately yields

C n teC
2 2 2 2
06 < =D&l + oIl + (5 + 23 ) il

— tev]|&l3 + tenllwe|[Tl1€T -

If we takee sufficiently small (of the order®v3), we get

C
06 < (o, + ), fore € [0,1), (A9)

and therefore ~
2 c ! 2 2
lgollf < - exp(n [ lwllFds) 1ol
0

for some (possibly rather large) constahtlf we now definery as the orthogonal
projection on the set of Fourier modes wjthh > N, we have

1
lrn&ell < 1€l -

The bound (4.22) immediately follows by takiag = 1 — w for NV sufficiently
large.

We now turn to the proof of the bound (4.22). We defineas above (but
reserve the right to choose the precise valuéVofater) and set! = ¢ and
&l = (1 — m)&. With these notations, (4.22) amounts to obtaining bound&gdh
with £§ = 0. We have

HNEN? = =20 || VE|* + 2(BIKE, we), &) — 2(B(Kwy, &), &)
A|EM? = —2v||VEM? + 2(B(CEs, wy), €F) — 2(B(Kuwy, €1, &) -



ESTIMATES ON THEMALLIAVIN MATRIX 34

In order to bound the second line, we use th&tc!||? > N2?||¢k||? and that
|(B(ICh, w), AM)| 4+ [(B(Kw, &), &) < 2|jw|1]|€]|]|€"|1. For the first line, we
use (A.7) with¢ = h, and the bound(B(Kw, £4), &")| < [|€4]|1]|wl]1]|€"]]. We
thus obtain

C
O < (1 +allR)IEE + Clladl 1N (A10)
Q€ * < —vNIIEF|® + CllwelflIE* (A.11)

for an arbitrary value ofy and for a constant’ depending o but independent of
N andn. This immediately leads fdf¢/*||? to the bound

t
— 2 _ 2(4_
le?|* < e t||£3|2+0/0 e NI g 3] Jo,s | ds

—uN2y b2, © ! 2 ' 2
< NG+ exe(n [ lwslFds + ) |l ds

where we made use of point 3 to bound the Jacobian. Combining this with the
bound of point 1 shows that, for evenyevery~, everyp, and everyl’, there exists
a constaniVy such that

—uN?2 2
Ewll&1P < 27N PR |7 + yel I 1gg 1P (A12)

forallt € [0,7] and all N > N,. Since& = 0 by assumption, it follows from
(A.10) that

t C(t—s) t
HﬁWSCAem(7F b [l dr) Rt s

t 8C(t—s) ane . 1/8 t 1/4 t
- (/ B [ 7 d ds) (/ ||€?||8d8) / ws12 ds .
0 0 0

The required bound (4.23) now follows easily by taking expectations and using
point 1. 0

Appendix B Estimates on the Malliavin Matrix

As an easy corollary of Theorem 6.2 in [MP04], one gets:

Lemma B.1 Denote byM the Malliavin matrix over the time intervd0, %] and
defineH as above. For eveny, 7, p and every orthogonal projectiory on a finite
number of Fourier modes, there existsuch that

P((Me,¢) < ellgll1) < Ce?exp(n|lwo|?) , (B.1)

holds for every (random) vectgr € H satisfying||mep| > af[¢ll1 almost surely,
for everye € (0, 1), and for everywg € H.
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Proof. Define the sef (M, K) by

SMK)={peM| lel=1, Vol <M, |mepl>K}.

Then, Theorem 6.2 in [MP04] says that

i < (P 2y _
P<¢65'PA‘},K)<M #.9) <€) < CeP expliwo?) (B.2)

Define now the se§’(a) by

S'a)={ellleli =1, lmel =a}.

It is clear that (B.1) is equivalent to (B.2) witki()/, K) replaced byS’(«). Fur-
thermore, one has

S)yc |J asS a),

a€la,l]

which concludes the proof of the lemma. O
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