SPECTRAL PROPERTIES OF JACOBI MATRICES
AND SUM RULES OF SPECIAL FORM

S. KUPIN

ABSTRACT. In this article, we relate the properties of elements of a Jacobi
matrix from certain class to the properties of its spectral measure. The main
tools we use are the so-called sum rules originally suggested by Case in [2, 3].
Later, the sum rules were efficiently applied by Killip-Simon [8] to the spectral
analysis of Jacobi matrices. We use a modification of the method that permits
us to work with sum rules of higher orders.

As a corollary of the main theorem, we obtain a counterpart of a result of
Molchanov-Novitskii-Vainberg [11] for a “continuous” Schrédinger operator on
a half-line.

INTRODUCTION

It is well-known that a bounded self-adjoint operator with simple spectrum,
acting on a (separable) Hilbert space, is given by a Jacobi matrix (see (0.1))
in an appropriately chosen basis [1, 5]. The study of spectral behavior of the
described self-adjoint operators hence is immediately reduced to the study of
spectral structure of Jacobi matrices.

On the other hand, a Jacobi matrix is uniquely defined by its spectral measure.
So, it is extremely important and interesting to connect properties of the elements
of a matrix with properties of its spectral data.

In this work, we are concerned with Jacobi matrices which are compact per-
turbations of the free Jacobi matrix Jy (see below). Second, we are interested in
relations the spectral measure of a Jacobi matrix satisfies if the elements of the
matrix possess some summability properties. The inverse implication is left out
of the scope of this paper.

We introduce some notation to formulate our results. Let a = {ax},ax > 0, b=
{bk}, by € R, and

bo ag O '|
0.1 J=J(a,b)= | a b .
(0.1) (a,0) {0 b J
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2 S. KUPIN
be a Jacobi matrix. The free (or Chebyshev) Jacobi matrix is given by
[ 0 1 0 -|
Jo=J(1,0)=11 0 ..
o]

The scalar spectral measure o = o(J) of J is defined by the relation

(0.2) ((J = 2)ep, e0) = / do (z)

]RI'_Z’

where z € C\R. The density of the absolutely continuous component of o is
denoted by o’.

As we already mentioned, we consider matrices J which are compact perturba-
tions of Jy. In this case, the absolutely continuous spectrum o,.(J) of J coincides
with [—-2, 2], and the discrete spectrum of J lies on two sequences {x;t} with prop-
erties 7 /' —2,27 < =2, and 2] \, 2,2} > 2.

The results we obtain in this work, essentially rely on the so-called sum rules.
The sum rules were originally suggested in [2, 3]. The topic drew more interest
with appearance of [4]. Later, the method of sum rules was extensively developed
and efficiently applied to the spectral analysis of Jacobi matrices in [8]. The article
also contains broad historical references and bibliography. The following theorem
is one of the results obtained in the latter paper.

Theorem 1 ([8], Theorem 1). Let J = J(a,b) be a Jacobi matriz. Then, J — Jy
is Hilbert-Schmidt (see Subsection 1.3), if and only if

2
i) / logo’(z) (4 — x2)1/2 dx > —o0, ii) Z(x;t2 — 4)3/2 < oo,

_9 -
Note that the operator J — Jy lies in the Hilbert-Schmidt class if and only if
Z(aj —1)%+ Zb? < 00.
J J
Subsequent papers [9, 10, 12] concentrated on different classes of Jacobi ma-

trices. Denoting a = a — 1, 1 being the sequence of units, we quote one of the
principal results of [10].

Theorem 2 ([10], Theorem 1.1). Let J = J(a,b) is a Jacobi matriz and J—Jy €
Ss (see Subsection 1.3). Then, for a fized m,

D (a4 ajgme)® + D (b bjpme1)’ < 00
j

J
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if and only if

2
i) / log o' (z) Wi (z) dz > —oc0, 1) Z m}g —4)%? < 0,

-9 j

~~

where Wy, () = (4—22)"Y2(1-T2(2/2)) and Ty, is the m-th Chebyshev polynomial
(of the first kind).

Other interesting questions involving sum rules are discussed in [12, 13].

The proof of the central result of the present work required us to introduce
several modifications to the methods of [8, 9, 10]. First, it turns out that compu-
tations pertaining to sum rules are much simpler on the domain C\[-2,2] than
on the unit disk {¢ : || < 1}. This observation is mainly borrowed from [16].
Second, we have to resort to some arguments on commutation of operators and
bounds coming from relations between classes of compact operators.

The main theorem of the paper is as follows. We set da = {ag1 — ag} and

(a) = {('Vk:(a’))j}, where
(0.3) (ve(@)); = of — a1 - .. e
Theorem 3. Let J = J(a,b) be a Jacobi matriz. If

i) a-1,bel™", Ja,0be P
(0-4) i) w(a) ell, k=3,[m/2+1],
then

2
(0.5) ") / logo'(z) - (4 —22)™ V2 dx > —co, it Z(x;tQ —4)™H/2 < o,
_9 ;

With the exception of (0.4), the formulation of the theorem agrees with a
conjecture from [9].

It is also worth mentioning that, unlike the quoted theorem from [10] (see
Theorem 2), we do not assume any “a priori” information on the Jacobi matrix
J. Furthermore, when m = 1, the theorem gives the “only if” direction of
Theorem 1. On the other hand, the conditions ¢), i) of the theorem are not at
all necessary for ¢'), i7'). This follows, for example, from a result of [9]. Further
open questions connected to Theorem 3, are discussed in Subsection 6.2.

As a consequence of the result, we notice that when J is a discrete Schrodinger
operator (that is, when J = J(1,b)), condition (0.4) holds trivially.

Corollary 1. Let J = J(1,b). Then, if b € ™ and 9b € 12, the relations (0.5)
hold true.

The corollary is a discrete counterpart of a result from [11] for a “continuous”
Schrodinger operator on a half-line. We also note that assumptions of Theorem 3
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can be slightly weakened in this setting. Namely, the claim is still true if b € [2
and b € ™2 m being even.

The article is organized in the following way. Preliminary facts are listed in
Section 1. A method of deriving the sum rules on C\[-2,2] is explained in
Section 2. Theorem 3 is proved in Section 3, the proof of the principal lemma
being postponed to subsequent sections. Auxiliary facts needed for the proof of
the latter lemma are proved in Section 4. Final bounds and the lemma itself are
obtained in Section 5. Section 6 discusses some consequences of Theorem 3 and
open questions pertaining to the subject.

We conclude the introduction saying a few words on the notation. As always,
symbols N,Z, and Z, stand for the natural, integer and non-negative integer
numbers, respectively. To keep the notation reasonably short, the spaces P(Z, )
and P(Z),p > 1, are denoted by . We also set D and T to be the unit disk
{C¢ : |¢] < 1} and the unit circle {C : || = 1}, correspondingly.

Acknowledgments. 1 am grateful to S. Denisov, R. Killip, B. Simon, and P. Yu-
ditskii for interest to the work and helpful discussions. The paper was completed
during author’s visit to Caltech. I would like to thank the Department of Math-
ematics of the institute for the hospitality.

1. PRELIMINARIES

Information contained in this section, is well-known (see [8, 14, 15]), and is
included only for reader’s convenience.

1.1. Some facts on one-sided Jacobi matrices. Let J = J(a,b) be a Jacobi
matrix, defined in (0.1) and acting on [*(Zy). Let {ex}rez, be the standard basis
in the space. It is easy to see that the so-called Weyl function

M(z) = ((J — 2)""eo, €0),

associated to J, lies in the Herglotz’ class (i.e., has a positive imaginary part on
the upper half-plane), and, consequently, it admits representation (0.2) with a
measure o0 = o(J). The measure is called a spectral measure of J and is unique
up to a normalization. In particular, we have

o= 1 weak- lim Im M (. + dy),
™ y—0+
and, moreover, ¢'(z) = 1/7 limy_,o4 Im M (z + iy) for almost all z € R.

Suppose that rank (J — Jy) < co. As we mentioned in the introduction, the
function M is meromorphic on C\[—2,2]. It is often convenient to uniformize
the domain with the help of maps ((2) = 1/2(z — V22 — 4), z € C\[-2,2], and
2(¢) = (+1/¢, ¢ €D. Tt is clear that ¢ : C\[-2,2] = D, z: D — C\[-2,2], and
the maps are mutually inverse.
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Let us consider a generalized eigenvector u(¢) = {u;({)} of J (that is, Ju(¢) =
(¢ +1/¢Q)u(¢)) with the property

lim ¢u;(¢) = 1.

j—+oo

The vector u and the function ug are called the Jost solution and the Jost function,
respectively. We have the following theorem.

Theorem 4 ([8], Theorem 2.16, 2.19). Let rank (J — Jy) < oco. Then
1
uo(2) = uo(((2)) = -7 det(J = 2)(Jo — 27
0

where Ay =[];a; and z € C\[-2,2]. Furthermore,
o V4 —a?

|UO(I')| = 0_,(1.)
almost everywhere on [—2,2].

More information on the Jost solution and the Jost function of a Jacobi matrix
J can be found in [14], Ch. 10.

We also need a result connecting properties of the discrete spectrum {x;t} of
J to the properties of the sequences a = {ax} and b = {bg}.

Theorem 5 ([7], Theorem 3). Let J = J(a,b) (see (0.1)), and a,b € I™. Then

Z(l'j:Q _ 4)m+1/2 < CO(Z |CL _ 1|m+1 + Z |b|m+1)
J J J
with a constant Cy depending on m.

1.2. Facts on two-sided Jacobi matrices. In this subsection, we are inter-
ested in two-sided Jacobi matrices. The exposition mainly follows [14], Ch. 10,
and [15]. The second paper also discusses very interesting and deep aspects of
the scattering theory for Jacobi matrices.

Let a = {ag}rez, b = {br}rez, and J = J(a,b) be a Jacobi matrix, acting
on [?(Z). As before, {eg}rcz is the standard basis in 1?(Z). We set £ to be the
operator of orthogonal projection from the space on lin{e_;,ep}, where lin{.}
refers to the linear span of indicated vectors.

We define a 2 X 2-matrix-valued function M with the help of the formula

M(z) = E(J - 2)7t&*.

As in the previous subsection, M is in the matrix-valued Herglotz’ class (see [14],
Appendix B, [15]), and, consequently, it can be represented as

M) - /R ()

’
r—Zz
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where ¥ is a 2 X 2-matrix-valued measure ¥. The density of its absolutely con-
tinuous component is denoted by X'.

Let Jo = J(1,0), where 1 and 0 are two-sided sequences of 1’s and 0’s. Assume
that rank (J— Jp) < co. In this case the absolutely continuous spectrum o,.(J) of
J coincides with [—2,2] (and is of multiplicity two). The discrete spectrum of J
lies on sequences {5 } with properties z; ~ —2,z; < =2, and =} \, 2,2} > 2.

We introduce the so-called transmission coefficient of the Jacobi matrix J now.
Consider the Jost solutions uy satisfying the relations

Tus(©) = €+ 1/Qua(Q)y  lim CFus() =1,

where ¢ € D\(—1,1). It is not difficult to see that vectors u.(¢),u+(1/(),( € T,
are linearly independent (see [14], Sect. 10.2), and we have for some functions
8, s+ that

u£(C) = s(Qu=x(1/¢) + sx(Qu=(C),

where ¢ € T\{—1,1}. The functions possess a number of remarkable properties,
and play an important role in the spectral analysis of Jacobi matrices. For in-
stance, they can be extended up to analytic functions on ID. The function s is
called the transmission coefficient of J.

Theorem 6 ([15], Theorem 1.1). Let J = J(a,b), ap = 1, and s be the trans-
mission coefficient of J. Then

det (27X (2)) = [s(¢(2))[*
for almost all x € [-2,2].

The theorem suggests that the Jost function ugy for one-sided Jacobi matrices
is a right counterpart of the transmission coefficient for two-sided Jacobi matrices
and vice versa.

1.3. Compact operators and commutators. Now, we discuss some proper-
ties of certain classes of compact operators; see [6] in this connection.

Let A be a compact operator on a (separable) Hilbert space H. The singular
values {sz(A)}, sx(A) \, 0, sx(A) > 0, are defined as szx(A) = A\g(A*A)Y2, where
A(A*A) is the k-th eigenvalue of operator A*A. The Schatten—von Neumann
classes are given by the relations

Sp = {A — compact : A5, = Zsk(A)p < oo},
k

where p > 1. In particular, S; and Sy describe classes of nuclear and Hilbert-
Schmidt operators, respectively.
The sets S, are ideals, that is,

1BACs, < [IB[l[|Alls, [IC1],
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for any bounded operators B,C on H and A € S,. We also have the Hoélder
inequality for Sp’s, i.e.

[ A1 Anlls, < |[Adlls,, - - - |[An]ls,, ;
where A; € Sp;,j=1,n,and }_;1/p; = 1.

Suppose now that A, B are some operators on H. For the sake of simplicity,
we suppose A to be of finite rank. Let, furthermore, {e;} be a fixed basis in the

space. By tr A we mean
tr A= Z(Aej, ej),

j
and, clearly, |tr A] < [|A]ls,-

We define the commutator [A, B] of A and B by [A,B] = AB — BA. The
following simple lemma holds.

Lemma 1. Let A, B be some operators. Then
k—1
(1.1) (A%, B] =)~ A (A, BIA.
§=0
The proof of the lemma immediately follows by induction from the equality
[AB,C] = A[B,C] + [A, C]B.
Of course, the lemma also implies that
k—1
(1.2) [A,B¥] =) B*'7[A, B|B.
§=0

2. A SPECIAL APPROACH TO THE SUM RULES

The contents of the first two subsections of this section closely follows [16] and
is quoted only for completeness of exposition.

2.1. Sum rules as identities involving residues. We suppose first that rank (J—
Jo) < 0o. We have the following proposition.

Proposition 1 ([16]). Let ug be the Jost function of J and p be a real entire

function. Then
+

(2.1) / M) d = Res o {% log uo(z)} ,

where A is a function defined by relations

ﬂAO(x)v z Q [_272]7

z € [-2,2],
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and
#{xj : xj >z}, x>2
N(z) =< #z; @ z; <z}, x<-=2
0, x € [-2,2].

As always, symbol # means the number of elements in a set and Res »(.) refers
to the residue of a function at z = oo.
Proof. Let

p(2)
F(z) = ———=logug(2).

We choose the branch of v/2? — 4 with the properties v/22 — 4 > 0, when z < -2,
V22 —4 € iRy, when z € [-2,2], and v2? — 4 < 0, when z > 2. We readily see
that the function F is analytic on C\[z], z]]. The function also has well-defined
boundary values on the upper and lower edges of [x],2]]. We denote them by
F., respectively.

For a sufficiently big » > 0, we have by definition of the residue at z = oo that

1
i ). " F(2)dz = Res o F(2).
We have at the left-hand side of the equality
+ +

1 1 Ty Ty
—— F(z)dz = — F dz — F(z)_dz ).
ol PG EE ( [ e [F@ )

1

Since F(z)_ = F(x)y,r € [z],z]], we continue as
+ +
1 e 1 [*
(2.2) 9 - (F(z)y — F(z)_)dzx = — /m_ Im F(z), dz.
We note that (vz2 — 4)y = iv/4 — 22 for z € [-2,2], and, by Theorem 4,
a4 — p2
Re log ug(z)4+ = log |ug(z)| = 5 log T;.

Furthermore,

—#{xj : xj >z}, x>2

Im (loguo(z))4+ = { #{xj—

Dy <z}, 1< -2
Consequently,
N
- p(x) lOg 4, - ’ 2 [_272]7
" Wi o)
Im > logug(z) | =
Z p—
C R ), v ¢ [-2,2)
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Plugging this expression in (2.2), we obtain

/ log ~—— mQ dx + /
— og
T J_oV4— 22 0' \/x2

The proposition is proved. Il

Res oo F(2) = —

Ao(z) dz.

It is worth mentioning that assertions of this type may be proved for functions
of more general form than real entire functions.

2.2. A special sum rule. We are particularly concerned with the case

p(2) = pm(z) = (1) (z* — )™,
where m € N. We have

1 Vi — 22
x?)m—l/? log £

_(4 - ’ € [_27 2]7
Am() = 27 o'(x)
(_1)m+1(l.2 - 4)m—1/2)\0(l.)’ T Q [_272]
We put por = Y0+, 0z being Dirac’s delta centered at zo. We notice that
7
Xo(z) = [} dpoy(s) for z > 2, and we get integrating by parts
+ +

/ (22 — )™ V2N (2) dx = / Gm(z) dpos(x Z Gm
2 2

where
(2.3) Gm(z) = / (5% — 4)™ 12 ds.
2

We extend G,, to £ < —2 in even way and, carrying out similar computation for
Mo—, we see that
+

/;2 Am(z) da + /2”1 Am(z) dz = (—=1)™H Z ()

1

Furthermore, the inequality C (2 £2)™ /2 < (22 — 4)™ /2 < Cy(2 £ 2)™ 2 for
z in [z7,—2) or (2,z]], respectively, and some constants C}, Ca, implies that

(2.4) Gm(z) = C3(x? — 4)m+1/2 +O((a? - 4)m+3/2).
Summing up, we obtain that the left-hand side of (2.1) is given by the formula
q)m(O') = (I)m,1(0) + CIDm,Q(g)

(2.5) = % _2(4 — ™12 )og % dr + (=1)™+! Z G (2F)

Observe that ®,,2(c) > 0 when m is odd and ®,,2(c) < 0 when m is even.
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2.3. Evaluation of the residue. Let us compute the right-hand side of equality
(2.1) now. In a neighborhood of z = co, we have

logug(z) = tr(log(z — J) —log(z — Jo)) — log Ag

= tr(log(I — J/z) —log(I — Jp/z)) — log Ag

_ _{1ogA R 1}-

It is convenient to set Ay = diag{ax}, and so log Ay = tr log Ap.

Furthermore, we expand p,,(2)/v2% — 4 = (=1)™+!(22—4)™~1/2 in the Laurent
series centered at z = oo. That is, we have

P?‘Ii—‘

m—1

_oaym=1/2 m(2m _ 1)” m m+1
(26) (1-=x) = ;::0( FCZE_ 2% 4 (-1) ROl + O(z™1)
for small |z|, C2F_, = %, and k! refers to “even” or “odd” factorials.
Consequently,

(22 _ 4)m—1/2 _ Z2m_1(1 _ (4/22))m—1/2’
and, making use of (2.6) together with C2m=2k=2 — C2k+1 e see that
2m—1 2m—1
m—1

_aym+12 g \m—1/2 _ o2m (=1)* 2k+1 ,2k+1 _ (2m — ! 1 1
(=)™ 4™ =2 {I; 2D Comir? e 2 (O\3 )

For the sake of brevity, we put

1
2 _ gym-1/2 2+
log uo(2 ch o (2% — / Z dok+1 +0 (23)

k=-1

Then

pm(2) )
Res « log ug g d c
(m g 2k—1C2k -

An elementary computation shows that

() = Resoo( pwé(z)zlloguo(z))

2% —

- (—1) 2k—1 2% 2%k (2m — )N
(27) = _{;22k+1k0m 1t (J _JO )+th‘ lOgAO .
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Comparing (2.1), (2.5), and the latter relation, we obtain

(2.8) % /_ - 2212 Jog —VU(;Q dr 1 (1) Y Gle}) = W),

This is precisely the sum rule we are interested in.

3. PrROOF OF THEOREM 3.

The proof of the theorem depends on a number of auxiliary lemmas which are
proved in subsequent sections. In this section we prove the theorem modulo these
facts.

The key role in the argument is played by the following lemma.

Main Lemma. Let J = J(a,b) satisfy the assumption of Theorem 3. Then
(3.1)
fm/2+1]
Ton(T)| < Callla = it + [[Bllmis + [10all3 + 11005+ Y llv(a)lh),
k=3

where sequences Yi(a) are defined in (0.3), and the constant Cy depends on ||a —
Lloo, [[bl]so, [10alloo, and [|0b||so.-

The norms ||.||, refer to usual norms in [P-spaces. With exception of the lemma,
the proof of Theorem 3 is quite standard (see [8, 9, 10]).

Proof of Theorem 3. We have to prove that quantities ®,,1(0) and @, 2(0),
defined in (2.5), are finite.
We put ay = {(an)x} and a’y = {(ay)x}, where

(an)e = {9 k < N, () = 1, k<N,
NIk 1, k> N, NET Y ar, k> N.

Define sequences by, Vy in the same way (of course, with 1’s replaced by 0s).
Let Jy = J(an,by) and on be the spectral measure of Jy. As we readily see,
ay — 1,0y — 0, Odly,0by — 0, and (ay) — 0 in corresponding norms as
N — oo. By the Main Lemma, we have for N' =N —m

(T T) = Um(Jw)| < [ W (alys, Uy)| < Calllaly — L[7E + b [

+ [@al |13+ 1100115+ 325 [1w(aiy)[]),

or, ¥,(Jn) — ¥pn(J) as N — co. On the other hand, (Jy — 2)™! — (J — 2)7!
for z € C\R, and, consequently, oy — ¢ weakly. Looking at [8], Corollary 5.3
and Theorem 6.2, we get

D, 1(0) < limNinf D 1(on)
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and

li q)m,g(O'N) = q)m,g(O').
N—oo

It is important that always @, 1(0) > —oo (see [8], Lemma 5.1 or [10], Sect. 3.1).
We consider cases when m is odd or even separately. First, assume m to be
odd. Then ®,,2(c) > 0 and

D (0) = Dpp1(0) + Py 2(0) < limsupy P (on) = limsupy Y (Jn)

= limyoeo Un(J) = Upa(J) < 00

Since &y, 1(J) > —o0, we see that ®,,1(0) and @, 2(0) are finite. Together with
(2.4) and (2.5), this proves the theorem in this particular case.
Now, suppose that m is even. We have ®,, 2 < 0, and Theorem 5 implies that

[Pma(J)] = D Gla) < Collla = Ufmtt + 11blImid)-
j

Furthermore,
Pp1(0) < limsup Pppi(on) = limsup(¥p,(JIn) — Prm2(JIn))
N N

< lim \I/m(JN) - I\}im q)m,g(JN) = \I/m(J) - CI)m,Q(J) < 0.
—00

- N-ooo

The proof of the theorem is complete. a

So, when m is even, the proof of Theorem 3 leans on Theorem 5 besides other
facts. On the other hand, we can prove a version of Theorem 5 when m is odd.

Corollary 2. Let J = J(a,b) satisfy assumptions of Theorem 3 and m is odd.

Then
S (@ - 4™ < oo,

Proof. Keeping in mind relation (2.4), we have to prove that

P o(0) = Z Gm(x;-t) < 00.

Recall that ®,,1(0c) > —oo. Slightly modifying arguments from the proof of
Theorem 3, we obtain

q)m,g(O') = lim q)m,g(O'N) = lim (\I/m(JN) - (I)m,l(UN))

N—oo N—oo

< U,(J) - limNinf D 1(oN) < 00.

The corollary is proved. l

Nevertheless, we have to say that the above corollary is less sharp with regard
to the discrete spectrum {x;t} than Theorem 5.
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4. COMMUTATION OF CERTAIN OPERATORS AND PERTAINING ESTIMATES.

In this section we begin discussion of the facts needed for the proof of the Main
Lemma. Namely, let us look at expressions tr (J%* — J2¥) appearing in (2.7). Let
V=J-Jyor V=J(ab), where « = a — 1 and 1 is a sequence consisting of
units. Obviously,

J% = (Jo + V)% Z Yoo TV VY,

p=0 io+..+ip=2k—p

and, consequently,

2k
r(J*F—JF =t > > VLV

p=1 d1+4..4ip=2k—p

It occurs that, under assumptions of Theorem 3, the quantity tr V.Ji ... V.Jy
behaves, up to complementary bounded terms, as tr VpJgk_p . In other words,
we may assume operators V and Jy to commute modulo “good” summands.
The proof of this observation constitutes the contents of the present section (see
Lemma 5).

4.1. Commuting operators V and Jy. We agree to write O(A?) instead of

Zfﬂv By ACy ADy with some bounded operators By, Cyx, Diy. We also introduce

multi-indices k = (k1,... ,kp), p = (p1,p2,p3), and 1 = (I1,12,15). Set |k| =, k.
The following lemmas hold.

Lemma 2. Let k| = N. Then

(4.1)
VI . VIr =VPIY + Y ap BVEVE JRIVETE + O(V, o).

Nl=p, |pl=N

Proof. We prove the lemma by induction on p. The claim of the lemma is trivial
when p = 1. We suppose that the lemma is valid for p and we prove it for p + 1.
We have k = (k1,... ,kpt1) and

VIE VI = VIR VRPN + Y apdB VRVE, JRIVER OV, Jo)?)),

l|=p, Ip|=N"

where N = kg + ... + kpj1. Furthermore,

VI VP = V(PG 4 [Jg, Vg = VERIg Y 1 VI Vel
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Then, taking p} = k1 + p1, we get
VIR BV [V JRIVE R = VRV, R R

= V(VRI 4 [T VRV, RV g
= VRV, JEVEIR 4 OV, Jol?)
= (VI VR RV, SV IR 4 O([V, Jof?)

= JVERVE VR + OV, o).

Above, we repeatedly used formulas (1.1) and (1.2) with A = V* B = Jy and
A =V,B = J¥ respectively. Finally, it is plain that

VI O(IV, Jol*) = O(IV; Jol?).
The proof is complete. O
Lemma 3. Let k| = N. Then
(4.2)  wVJE . VI = a VPR + Cstr VPV, Jol I + i O([V; Jo]?),
where Cs s a constant depending on p and N.

Proof. Employing Lemma 2, we immediately get the first and the last terms on
the right-hand side of the latter equality. As for the second term, we see that

w JPVEVE VB = Vh [V, TRV
= e VE[Ve, JEJRVE 4 O([V, Jo)?)
= wVAVE B+ OV, Jol?),
where p’ = p; + p3 and I} =1; + I3. Recalling (1.1) and (1.2), we obtain that
wVAVE, JPER = w V(X VIV, RVt g
= X, w VARV RV [V )

= 3, VEHTY, R O(V, Jo)?),

where If +1o —1=10; +1s + 13— 1 = p — 1. Transforming expressions [V, J}*] in
the same way, we finish the proof of the lemma. 1
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4.2. Bounds on trO([V,Jy]?) and tr VPV, Jo]J&¥ 1. In this subsection we
estimate quantities

(4.3) 1t O([V, JolP)|,  [tx (VPTH[V, JolJg )

under assumptions of Theorem 3.

To start with, we extend Jacobi matrices J = J(a,b) and Jy, acting on I*(Z,),
to Jacobi matrices on [?(Z), by joining 1’s on the auxiliary diagonals and 0s
elsewhere. For the sake of simplicity, the two-sided matrices generated by J and
Jo in this way, are also denoted by J and Jy. We note that the quantity ¥,,(J)
in (2.7), up to tr log A, is a trace of a polynomial with respect to J and Jo.
Consequently, ¥,,(J) for the two-sided Jacobi matrix J differs from ¥,,(J) for
the one-sided matrix only by a finite number of terms. These terms depend only
on a finite number of elements of the sequences {ax} and {bx}. So, we shall obtain
bound (3.1) for one-sided matrices if we prove it for two-sided ones. Hence, we
work with two-sided Jacobi matrices from now on.

Let {ex }rez be the standard orthonormal basis in the space [?(Z). We define a
shift operator S as Sey = egy1. Obviously, its inverse S™1 is S~ley = ex_1.

We identify a sequence a = {ax} with diagonal operator diag {ax}. This agree-
ment is in force through the rest of the paper. Let, furthermore, a(,) = {ar4s} for
an integer s. So, we have

(4.4) J=J(a,b)=Sa+aS'+b, Jo=85+8571,

and V = Sa + aS™! + b, where o = a — 1. We have for an integer k

(4.5) S*a = a@S*, aS* = Sa_x).

A straightforward computation with the help of the latter formulas shows that
Vo = Sfocyy +aS™ 24 Sbyy +bS™ + o+ aq,
JoV = SPa+acySTESbtbyST ot aq,

and, consequently,

(4.6) [V, Jo] = =S*v + 7572 = S5+ 85,

where, for the sake of brevity, v = a— a1y = a— a1y = da, and § =b—b_}) =
0b. Notice, for instance, that

(4.7) tr [V, Jo]* = =2tr (v* + 5%) = =2(||0all3 + 1|8b]13).
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So,

trO(IV, o)l < D ltr (BelV, Jo] GV, Jol D)

IA

M M
> BRIV, JolClV; Jol Dills, < IIBe[V; Jol Cills, - [[[V; Jol Dl s,
k k

M
(4.8) < D BIHICHIDLIIY, o[,
k

and, by (4.7), we obtain an estimate for the first expression in (4.3).

A bound for the second expression in (4.3) is more complex and essentially relies
on the specifics of the situation. To begin with, we observe that tr V?[V, Jo] J&¥ = 0
trivially, when p = 0 or NV = 0.

Lemma 4. Let p, N € N. Then
[tr VP[V, JolJg' | < Ce(l10all3 + 1|0b]13),
where the constant depends on p, N, ||¢||co, |0]]oos |06 |00, and ||0b]|co-

Proof. In essential, the proof is based on the antisymmetry property of [V, Jy].
We have

P
k=0
where ppi(a,b) = ppr(a,aqy, ..., ap-1);b,bq),...bp-1)) are homogeneous poly-

nomials of degree p. In a similar way,

N
Jév = Z CN,k(Sk + S_k)
k=0
for some coefficients ¢y . Applying (4.5) and (4.6), we compute

[V, Jl(S* +57%) = (=8% 2y + 95~ E) + (S5 2y 2 — 125 *?)

+ (=5 B + BSTED) 4 (S By — By STETY)
Above, the terms in the brackets have the same form. So, we shall obtain the
required bound if we prove it for a summand of the form

(S*Dp(,b) + Ppye(a,8)S™) (=S¥ g2y +757).
Recalling commutation relations (4.5), we get
(S*pp(a,0) + Ppn(a,0)S™)(=S*y sy +757)

= {vppx(a, b)}(k) = Y(=k-2)Ppk(a, b) + off-diagonal terms.
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This shows that the trace of the latter expression equals

tr {(90p(a, ) ) = V- e-2)Ppe(a,0) } = tr ¥ {pp(a, b) — ppe(a, b) o2 -
We prove now that, for a fixed k,

(4'10) pp,k(av b) - pp,k(av b)(k—Q) = Z Q1,S(CL, b)’}’(s) + Z QQ,S(aa b)ﬂ(s),

8

and this equality will readily imply the claim of the lemma. Above, g4, g2 are
some polynomials, v = da, 3 = 9b (see (4.6) and below), and the sums contain a
finite number of terms. Indeed, similarly to (4.8)

ltr v{ppe(@,0) — Ppe(a, D) -2y }| < D5 llans(a, O] - 1V]ls, |17 lls

+ 22 llazs(a, D)l - [1lls, 18 ls.-
Furthermore, ||v(s)|[s, = |[7l]s, = ||0all2 and [|5¢5)|| = [|8]ls, = [|0bl|2, so

[tr Y{pp(a,0) = Ppr(a, -2} < [allf (32, llars(a, b)l] + 3llaz,s(a, b))

+ 31100113 32, llaz,s(a, D).

To prove (4.10), we consider the terms composing ppx(a,b). For the sake of

simplicity we assume that the term we look at involves a, aqy, ... ,ap-1) only.
The general case is dealt with similarly. By induction on p, we show that
(4.11) a™aff ... a?;’_l) — (a™af ... aZ:_l))(k) = Z 75(@)Y(s)-

8

For p =1 the claim is trivial. For an arbitrary m, we have

a"la?f)...a?;’_l) - (a"la?f)...a?;’_l))(k)

k n k3 np n n 'I'Lp
= Y <(a fag) - )Gy — (@Ml "“(p—l))(j)) '

Denoting ¢’ = a(j_1), we continue as

mi 2 1Mp _ mi_m2 1Mp
R N ROREO BRI

= <a,,n1 —_ a;,?ll)) a’?f) e a’?:_l)

mi ma2 m ma m
We note that factor a’™ — a'(}) can be represented in the form (4.10). Conse-
quently, the first term in the above equality has form (4.10) as well. The factor in

the brackets entering in the second term is of required form by induction. Thus,
relation (4.10) is proved, and so is the lemma. O
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4.3. Estimating tr (VPJY —VJE ... VJF). The discussion of the previous sub-
section yield the following lemma.
Lemma 5. Let k = (k1,...,kp) and k| = N. Then
tr (VEJg = VI V") | < Cr([|0alf + [10b] 1)

with constant C7 depending on K, ||a — 1||co, ||6]]c0s |10¢] |00, and ||0b]]so-

The proof is immediate from comparison of Lemma 3, Lemma 4, and the
discussion before it (in particular, see (4.8)).

5. ESTIMATES FOR U,,(J) AND THE PROOF OF THE MAIN LEMMA.

5.1. Simplifying the expression for ¥, (J). Let us turn back to equality
(2.7), where the quantity ¥,,(J) is introduced. By Lemma 5, we see that

tr (J% — J2%) = tr((Jo + V)% — J2F)

tr o8 CRVPIR Pt Hy(a,b),
and |Hog(a,b)| < Cs(]|0al|2 + [|00]|3). Consequently,
U (J) = Upa(J) + Upa(J)
S (‘Dk 2k— (2m — 1)1
(51) = —tr {Z 22k+1k Z CngpJO p) W lOg AO

k=1 p=1
+ \:[Jm72 (J)7

where |[U,,5(a,b)| < Co(||0all? + ||0b]|2). With notation we accepted (see the
beginning of Subsection 4.2 and (4.4))

log Ag = log(I + a) = of + O(a®™),

p=1 P

Changing the order of summation in (5.1) gives

(5.2)
— & (—1)ptt
\Ijml {ZVF JO ( ) Z( ) ap+0(a2m+1)}’
2
where, by definition,
(5.3) F(l)= > (%ﬁ kcf Lep Jike,

k=[(p+1)/2]

It turns out that polynomials Fp,p = 1,m, have a very special structure. We
denote by Jox a symmetric matrix with 1’s on the k-th auxiliary diagonals and
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0’s elsewhere. Differently, Jor = S* + S (see Subsection 4.2). The following
lemma holds.

Lemma 6. We have forp=1m
2m—p

2m—1”
Fo() = (0P S g + Y dpao
s=p+1

with some coefficients dp .

Before going into the proof of the assertion, we formulate and prove a claim of
a technical nature.

Lemma 7. If py + 2 — 1 <m — p; and p; > 0, then

wil( )kck (k+p1—j)!:
= mp T (f = 2j)]

If p1 = 0, the above expression equals (2p — 1)!.
Proof. Obviously,

m—p1
(L) = Y (<1, 2t
k=0
and, consequently,
drtai— — (k+p— 1) .
— (g1 = pym P = kc«k 1 - k=25
g (7= ,;23( R VT

We set x = 1 and notice that, since p; + 25 — 1 < m — p;, the left-hand side of
the equality equals zero. This proves the first claim of the lemma. The proof of
the second one follows the same lines. [l

Proof of Lemma 6. The lemma is proved by a straightforward computation. We

have
2m—p’

0) = Z dp’,sJO,s-
s=1

We compute the first p’ coeflicients dy , in this sum. It is convenient to split the
computation in two particular cases — when p’ is even or odd. Indeed, when p’ is
even (odd), the odd (even) auxiliary diagonals of F,y (see (5.3)) vanish, and we
have to compute dy s only for even (odd) s = 0,p, respectively.
We give the details only for even p’, that is, when p’ = 2p. The other case can
be dealt with in the same spirit. Recalling that Jy = S + S, we obtain
2k—2p k—p
J2=2P _ Z cl " GA-2(k—p) _ Z Cga;(kp—)p) Jozs-
=0 3=0
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Combining the latter equality with (5.3), we come to

m

( ) 2k—1 ~2p ~j+(k—p)
dop,2j = Z 92%k+1], C2m 1C3 pC?(k -p) -
k=p+j

We simplify this expression using definitions of C2%~1 (see Subsection 2.3) and
C?. Letting j = 0,p and p; = p — j, we get

(=1)2r(2m — D! "il e (k+p—1)!
2m+H1(2p)(m — pp)! P (B =25

dop,2j =
k=2j

Since p; + 25 — 1 < m — py, or, equivalently, 2p — 1 < m, Lemma 7 shows that
dopoj = 0 for j = 0,p — 1. By the same lemma

A (2m — 1! ( . (2m — 1)!!
22 = gmri(p) ! T T T 2(2p)2m)!
when j = p and p; = 0. The proof is complete. O

5.2. Proof of the Main Lemma. First, we bound summands corresponding
top=m+1,2m in (5.2). We get

|tr (VPER(Jo))| < [[VPEL(Jo)lls, < |[Fp(Jo)l| - [[VPls:,
and for these p’s
(5.4) IVP|ls, < CoollV™ s, < Crollla = mis + [BlImT),

| m+1

with the constant depending on ||V||. Similarly, |tr o?| < Ci1lla — 1|3 1.

Let p = 3, m now. As we already mentioned (see (4.9)),
P

VP =3 (Spp(a,b) + ppyla, b)S7).

7=0
It is easy to show by induction that the polynomials py,(a,b) are particularly
simple. Namely,

Pppla,b) = aaqy ... agp-_1).
Lemma 6 yields that

(2m — 1!
tr Vpr(Jo) = (—1)thI‘ VpJO,p
(2m — 1!

- (-1

2oyt (Pea(@:0) + 2op(a:B)p)

(2m — 1!
= (_ 2m ” Za.?a.ﬁ‘l - At (p-1)s
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since tr VPJy, = 0 for s > p + 1. Hence,

2m — !

I Tt

(2m — 1!
(—1)p+1W Z(OGD — Qg1 Qi (p-1));
J

and we obtain that

(55) \MWFw><>WQ%%¥

where C12 depends on p,m, and sequences Vx(a) are defined in (0.3).

Observe that v,(a) = 0 when p = 1. Furthermore, we have for p = 2 that

Zj(a?‘ - jay1) = 3 Z ( — 205541 + a]+1)

= 3250 — aj)* = 3/|0all3.

So, the left hand-side of (5.5) for p = 2 can be estimated by Ci3/|0al|3.
It is also clear that inclusions a € ™ and da € I? give that v,(a) € I* for
p > m/2+ 1. Indeed, we have

)| < Crallyp(a)lly,

af —aaq) ... ap-1 = Z oo = k) Xp—(k-1)) - - Ap-1)-

The terms in the latter sum look like ay ..., (o — ag,)) for some i =
(i1, ... ,3p). Obviously, a = a—a;, = 0a € [*. Applying the Hélder
inequality

Oéip

p
1 4
oo <X (S 1),
k k j=1 14
with ajk = [(ag;))el, g5 =2(p—1) for j =1,p— 1, and apr = |(@ — ag,))xl, ¢p =
1/2, we get that

2(p—1
o = acqy - el < Cua (119l + [lall3E)

which is finite for p > m/2 + 1.
Thus, gathering the above argument with (5.1), (5.2), (5.4), and (5.5), we
complete the proof of the lemma. a

6. DISCUSSION OF THE RESULTS

6.1. Corollaries of the theorem. Note that condition (0.4) appearing in The-
orem 3 is essentially non-linear and is not easy to check. It seems useful to have
simple relations implying (0.4).
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We define a sequence Ag(a) as
(Ak(a))J = aj+1 + ‘e + Oéj+(k_1) —_ (k —_ 1)Oéj.
The proof of the lemma is close in spirit to the reasoning at the end of Subsection

5.2.

Lemma 8. If a € ™ 0a € 12 and Ax(a) € 19™F)  where g(m, k) = (m +
1)/(m +2—k), then vg(a) € I* for k= 3,[m/2+ 1].

Proof. Let & = {5;'-}, Whgre 5;'- = Qj; — Oy, OF Qjp; = Qj + 5;-,2' = 1,k—1.
Obviously, Oa € {2 yields & € [2. We also have

(Wk(a))j = 04? = QG4 - - O (k1) -
oz;? — aj(a; +5?1)...(ozj + 657 )
= —oz;-“_l(Zf:_ll d;) + additional terms.

Furthermore, we have (Ag(a)); = Z;:ll 5;- and

(@l < 3 o= [ 255+ 32 00,

Using inequality ab < (1/p)a? + (1/q)b? with p = p(m, k) = (m + 1)/(k — 1) and
q=q(m,k)=(m+1)/(m+ 2 — k), we obtain

1 1
_ m+1 Q(m7k) 2
e(a)ll1 < o p—_—— lla — 1[mi + SO Ak ()l gz + Cr5ll0all3-
The quantity on the right hand-side of the inequality is finite by the assumptions
of the lemma. O

Of course, it is easy to obtain other sufficient conditions providing vx(a) € I1.

Corollary 3. Theorem 3 holds, if condition (0.4) is replaced with Ag(a) € 190™F)
k=3,[m/2+1].

It is not difficult to observe (see Subsection 5.2) that assumptions (0.4) of the
theorem can be slightly relaxed. More precisely, we have the following corollary.

Corollary 4. Theorem 3 holds, if we require the series Y _;(x(a));, k= 3,[m/2+
1], to converge instead of (0.4).

Concluding the subsection, we point out that a counterpart of Theorem 3 is
true for two-sided Jacobi matrices as well.

Theorem 7. Let J = J(a,b) is a two-sided Jacobi matriz. If

i)  a—1,b€l™YZ), da,0bc*(Z),
i) yela) € 1(Z), k=3,[m/2+1],
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2
i) / logdet ¥'(z) - (4 — 2®)™ 2dz > —o0, ii') Y (2F" — 4™/ < oo,
_9 F
This result follows from a representation of the transmission coefficient s of J
in terms of the spectral data (see Theorem 6) and from word-by-word repeating

the proof of Theorem 3.

6.2. Some open questions. We discuss several open questions pertaining to
Theorem 3.

It seems that, despite some progress, the structure of the sum rules of high order
is far from being well-understood. For instance, we still do not know conditions
necessary and sufficient for (0.5). Despite the fact that the question is very natural
and immediate after the proof of Theorem 3, answer to it presently appears to
be out of reach. Nevertheless, even partial information on it would be extremely
important for understanding the general sum rules (see below).

A part of the above question is, of course, sharpening conditions da € 12 and
Ob € [? arising in the theorem (see [9] in this connection).

On the other hand, it is well-known that the Schatten-von Neumann classes
Sp,p > 1 (see Subsection 1.3) have strong interpolation properties. So, it would
be interesting to obtain counterparts of Theorem 3 for non-integer m > 1. In
particular, it is not clear what condition has to replace inclusions (0.4).

Let w be a measurable function on [—2,2] such that w(z) > 0 for almost all
x € [—2,2]. Furthermore, let ¢_ : (—o0, —2) — R, and ¢, : (2,+00) — Ry be
continuous decreasing (increasing) functions with properties ¥_(—2) = ¢, (2) =
0. Suppose that J = J(a,b) and o is its spectral measure. Questions on necessary
and sufficient conditions (or either necessary or sufficient ones) for {ax}, {0}

implying

i) / log ¢/ (z) w(z)dx > —o0, i) Zwi(x;t) < 00

-2

seem to be a more distant perspective. Interesting results in this direction were
obtained in [12]. Otherwise, everything appears to be open on this level of gen-
erality. For instance, it would be useful to see what happens for the sum rules
of “negative” order, that is, when w(z) — +oo sufficiently fast and ¢4(z) — 0
sufficiently slowly as x — £2.

We also mention that all situations studied up to now (see [8, 9, 10]) are strongly
symmetric. In other words, a weight w is even and ¢, (z) = ¢¥_(—z),z > 2. It is
natural to ask, how the conditions on {a;} and {b;} change when the symmetry
disappears.
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