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Abstract

The stability of some asteroids, in the framework of the restricted three body problem,
has been recently proved in [2] by developing an isoenergetic KAM theorem. More precisely,
having fixed a level of energy related to the motion of the asteroid, the stability can be
obtained by showing the existence of nearby trapping invariant tori living on the same
energy level. The analytical results are compatible with the astronomical observations,
since the theorem is valid for the realistic mass–ratio of the primaries.

The model adopted in [2] is the planar, circular, restricted three–body model, in which
only the most significant contributions of the Fourier development of the perturbation are
retained. In this paper we investigate numerically the stability of the same asteroids consid-
ered in [2] (namely, Iris, Victoria and Renzia). In particular, we implement the nowadays
standard method of frequency–map analysis and we compare our investigation with the
analytical results on the planar, circular model with the truncated perturbing function. By
means of frequency analysis, we study the behaviour of the bounding tori and henceforth
we infer stability properties on the dynamics of the asteroids. In order to test the validity
of the truncated Hamiltonian, we consider also the complete expression of the perturbing
function on which we perform again frequency analysis. We investigate also more realistic
models, taking into account the eccentricity of the trajectory of Jupiter (planar–elliptic
problem) or the relative inclination of the orbits (circular–inclined model). We did not find
a relevant discrepancy among the different models, except for the case of Renzia, that we
explain in terms of its proximity to a resonance.

Keywords: Three–body problem, Stability, Frequency analysis.
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1 Introduction

The stability of some asteroids under the gravitational attraction of the Sun and Jupiter has
been recently investigated in [2], where analytical results are derived in the context of the

simplest non–trivial three–body problem. More specifically, one assumes that the mass of the
minor body does not influence the motion of the primaries (restricted problem), that Jupiter
moves on a circular orbit and that the relative inclination is zero. Using Hamiltonian formalism,
the planar, circular, restricted three–body problem can be conveniently described in terms of a
suitable combination of Delaunay’s action–angle variables. Such model has two degrees of free-

dom and the Hamiltonian function describing the motion of the asteroid is nearly–integrable:
the integrable part describes the Sun–asteroid Keplerian motion, while the perturbation repre-
sents the interaction with Jupiter. The perturbing parameter is identified with the mass–ratio
of the primaries. A further simplification of the problem is performed in [2], where the authors
expand the perturbing function in Fourier series and they retain only a finite number of terms
of the series development.

Since the Hamiltonian system is 2–dimensional, invariant tori separate the constant energy
levels. More precisely, the phase–space is 4–dimensional; fixing an energy level (related to the
motion of the asteroid), one obtains a 3–dimensional space, in which invariant 2–dimensional
tori live. Therefore, the stability of the asteorid can be ensured by constructing two invariant
surfaces, which bound from below and above (on the given energy level) the motion of the minor

body. Under very general assumptions, the KAM theory developed by A.N. Kolmogorov ([5]),
V.I. Arnold ([1]) and J. Moser ([10]) allows to construct an explicit algorithm to ensure the
existence of invariant tori, provided that the strength of the perturbation is sufficiently small.
In the framework of KAM theory, a major problem was due to the fact that the estimates
provided by the original theorems were unrealistically small. To give an example, M. Hénon

([4]) applied to the three–body problem the original version of Arnold’s theorem and he was
able to prove the existence of invariant tori, provided that the mass–ratio of the primaries is
less than 10−333. A better result was obtained applying Moser’s theorem, which provides an
estimate of 10−50, whereas the astronomical value of the Jupiter–Sun mass–ratio amounts to
about 10−3. The disagreement between the analytical results and the physical measurements

was rather discouraging, as far as practical applications are concerned. However, in the last
two decades the development of computer–assisted proofs greatly improved the theoretical
estimates, leading to results which are now much closer to reality.

In particular, in [2] an elaborated isoenergetic KAM theorem has been developed to in-
vestigate the motion of some asteroids in the framework of the planar, circular, restricted

three–body problem, using a finite series development of the perturbing function. Such the-
orem has been succesfully applied to the study of the stability of the asteroids Iris (n. 7),
Victoria (n. 12) and Renzia (n. 1204) (the numbers denote the standard classification of the
asteroidal objects, see e.g. [12]; in [2] the analytical details of the proof are given for Victoria).
In all samples, it was possible to prove the existence of invariant tori bounding, from below and

above, the motion of the asteroid on a fixed energy level. The theorem is valid provided the
perturbing parameter is less than 10−3, in full agreement with the astronomical observations
of the Jupiter–Sun mass–ratio.

In the present paper we complement the results of [2] by providing a numerical inspection
of the stability of the asteroids Iris, Victoria and Renzia. The problem is investigated by

implementing the frequency analysis, as introduced by J. Laskar in [7], [8]. In order to test the
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validity of the model adopted in [2], we perform our experiments on different models. Indeed, in
the framework of the planar, circular, restricted three–body problem, we compare the models
obtained using the truncated Hamiltonian (i.e. retaining a finite number of Fourier terms as in
[2]) and the complete Hamiltonian (i.e. without any truncation of the perturbing function). The

results show that the truncated model provides a good aproximation of the full Hamiltonian.
Furthermore, we release the hypothesis of circular orbit by assuming that Jupiter moves on a
Keplerian elliptic trajectory, but we retain the assumption that the motion of the three bodies
takes place on the same plane. We still consider only a finite number of Fourier coefficients; in
the cases of Iris and Victoria, the results show a good agreement with the circular problem, in
the sense that there is no remarkable discrepancy between the critical values of the perturbing

parameter at which break–down of invariant tori takes place. A more evident discrepancy is
found in the analysis of Renzia, whose frequency of motion is close to an exact 7/2 orbital
resonance; in this case, the planar, circular model hides the effect of the resonance, since it
does not contain a number of Fourier harmonics adequate to the analysis of quasi–resonant 7/2
motions.

Finally, we investigate a model in which Jupiter still describes a circular trajectory, but the
orbits of the asteroid and Jupiter belong to different planes with non–zero relative inclination.
The Fourier development of the Hamiltonian is truncated up to a suitable order. The results
are compared to the previous models and, in the cases of Iris and Victoria, there is a good
agreement with the planar–circular and planar–elliptic, restricted three–body models.

This paper is organized as follows. In section 2 we introduce the different restricted three–

body models: planar–circular (providing also the formulae for the integration of the full per-
turbing function and for the development in Fourier series), planar–elliptic, inclined–circular.
The principles of the implementation of frequency analysis are recalled in section 3. The results
are presented in section 4, while the conclusions are drawn in section 5.

2 The restricted three–body problem

We consider three massive bodies P0, P1 and P2 with masses m0, m1 and m2. In applications, we
shall identify P0 with the Sun, P1 with an asteroid and P2 with Jupiter. Therefore, a reasonable

simplification consists in assuming that m1 is much smaller than m0 and m2; as a consequence,
we can assume that P1 does not influence gravitationally the motion of the primaries P0 and P2.
This model is widely known as the restricted three–body problem. In particular, we can assume
that the motion of P2 around P0 is Keplerian: according to the value of the eccentricity of P2,
we speak of circular or elliptic problem. Moreover, we can further simplify the model assuming

that the three bodies move on the same plane: in this case, we speak of planar problem, while
we define the inclined model, whenever the relative inclination between P1 and P2 is different
from zero.
We shall provide the Hamiltonian function describing the different models (planar–circular,
planar–elliptic, inclined–circular). In all cases, the Hamiltonian function is nearly–integrable,

being a small perturbation of the Keplerian two–body problem, occurring whenever the gravi-
tational attraction of P2 on P1 is neglected. The perturbing function represents the interaction
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between P1 and P2 and the perturbing parameter is related to the mass–ratio of the primaries.
In the following section, we describe the planar, circular, restricted three–body problem, with-
out making any restriction on the perturbing function. In particular, we provide explicit formu-
lae for the integration of the equations of motion. As a second step, we expand the perturbing

function in Fourier series and we retain only the most significant terms of the series expansion:
we refer to this model as the truncated, planar, circular, restricted three–body problem. Fur-
thermore, in the context of the truncated problem, we consider the effect of the eccentricity
of P2 (elliptic problem) and of the relative inclination of the orbits of P1 and P2 (inclined
problem).

2.1 The planar, circular problem: the full Hamiltonian function

We introduce the Hamiltonian function describing the planar, circular, restricted three–body
problem by adopting a suitable set of action–angle coordinates, known as Delaunay’s variables:

Λ, Γ, λ, γ (being (Λ, λ) and (Γ, γ) conjugated variables). Let a be the major semiaxis of the
osculating Keplerian orbit of P1 and let e be its eccentricity. We assume suitable normalizations
for the units of measure (see [2] for details): let m0 + m2 = 1, µ ≡ 1

m
2/3
0

, ε ≡ µm2. Then, the

action variables are related to the elliptic elements by

Λ = µ
√

m0a , Γ = Λ
√

1− e2 .

Concerning the angle variables, λ represents the so–called mean anomaly, while γ is the ar-

gument of perihelion (namely, the angle between the perihelion line and a reference line).
Moreover, let ψ be the longitude of P2; normalizing to one the frequency of P2, ψ can be
identified with the time. Finally, let Ψ be the action variable conjugated to ψ .

Let (r, ϕ) be the instantaneous polar coordinates of P1 and let us normalize to unity the
distance between P0 and P2; then, the Hamiltonian function is given by

H(Λ, Γ, Ψ, λ, γ, ψ ) = − 1

2Λ2
+ Ψ + ε R0(Λ,Γ, λ, γ, ψ ) ,

with

R0(Λ,Γ, λ, γ, ψ ) = r cos(ϕ− ψ )− 1√
1 + r2 − 2r cos(ϕ − ψ )

,

where r and ϕ must be expressed in terms of the canonical coordinates. Introducing the variable
α ≡ ϕ − γ, the perturbing function R0 depends on the quantity ϕ − ψ = α + γ − ψ . Let us
perform the symplectic change of variables (Λ,Γ,Ψ, λ, γ, ψ ) → (L, G,T, `, g, t) described by:

` = λ L = Λ ,

g = γ − ψ G = Γ , (1)

t = ψ T = Γ + Ψ .

The corresponding two–degrees–of–freedom Hamiltonian function reads as

H(L,G, `, g) = − 1

2L2
−G + εR(L,G, `, g) , (2)

with

R(L,G, `, g) = r cos(α + g)− 1√
1 + r2 − 2r cos(α + g)

, (3)
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where α must be expressed in terms of the Delaunay’s variables. The eccentricity is provided

by e =
√

1− G2

L2 . The equations of motion can be written as

˙̀ =
1

L3
+ ε

[
Rr rL + Rα αL

]

ġ = −1 + ε
[
Rr rG + Rα αG

]

L̇ = −ε
[
Rr r` + Rα α`

]

Ġ = −ε
[
Rr rg + Rα αg + Rg

]
,

where the subscripts denote derivatives: for example, Rr ≡ ∂R
∂r , rL ≡ ∂r

∂L . The computation
of the derivatives of R with respect to r and α is straightforward; concerning the derivatives
of r and α with respect to the Delaunay’s variables, we proceed as follows. We express the
instantaneous orbital radius as

r =
a(1− e2)

1 + e cos(ϕ− γ)
=

a(1− e2)

1 + e cos α
. (4)

Moreover, from standard Kepler’s relations we have:

tan
ϕ − γ

2
=

√
1 + e

1− e
tan

ν

2
, (5)

where ν denotes the eccentric anomaly (see, e.g., [11]). Since α = ϕ− γ, we find

α = 2arctan
(√

1 + e

1− e
tan

ν

2

)
,

where ν can be expressed in terms of the Delaunay’s variables through Kepler’s equation

` = ν − e sin ν .

In order to compute the expressions of ν, α, r in terms of the Delaunay’s variables, we start

by inverting Kepler’s equation, so to find ν as a function of `, L, G (recall that e =
√

1− G2

L2 ).
Then, we need to compute α and its derivatives, as well as r and its derivatives. To perform
this task, we invert Kepler’s equation using Bessel’s functions according to the formula

ν = ` + e
∞∑

p=1

1

p

[
Jp−1(pe) + Jp+1(pe)

]
sin(p`) , (6)

where the Bessel’s function of order k and generic argument x is defined by

Jk(x) ≡ 1

2π

∫ 2π

0
cos(kt− x sin t) dt .

The functions Jk(x) can be developed in series ([6]) as

J0(x) =
∞∑

n=0

(−1)n

(n!)2
(
x

2
)2n

(7)

Jk(x) = (
x

2
)k

1

k!

∞∑

n=0

(−1)n

n!
∏n

j=1(k + j)
(
x

2
)2n .
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Equations (6) and (7) can be used to find ν with arbitrary precision. Once the eccentric anomaly
is determined, we can compute α using the equation

α = 2arctan(f · h) ,

where we define f ≡
√

1+e
1−e and h ≡ tan ν

2 . This procedure allows to compute easily the

derivatives of α; for example, one has

αL =
2

1 + f2h2
(fLh + fhL) ,

where the computation of fL is straightforward (recall that e = e(L,G)), hL = 1
2 cos2 ν

2
νL and

νL can be computed from (6), up to arbitrary precision. In a similar way, one computes the
other derivatives.

Concerning r, from (4) we find

r =
G2

1 + e cos α
≡ f̃

h̃
,

where we define f̃ = G2 and h̃ = 1 + e cos α. Simple algebraic computations provide the
derivatives of r with respect to the Delaunay’s variables.

2.2 The planar, circular problem: a truncated Hamiltonian function

Let us rewrite the perturbing function (3) as

R(L,G, `, g) = r cos(ϕ− ψ )− 1√
1 + r2 − 2r cos(ϕ− ψ )

;

we can expand the second term of R using the Legendre’s polynomials Pj as (see [3])

1√
1 + r2 − 2r cos(ϕ− ψ )

=
∞∑

j=0

Pj(cos(ϕ − ψ )) rj .

The Legendre polynomials are recursively defined by

P0(x) = 1 ,

P1(x) = x ,

Pj+1(x) =
(2j + 1)Pj(x)x− jPj−1(x)

j + 1
∀j ≥ 1 .

Henceforth, R can be expanded as

R = −1−
∞∑

j=2

Pj(cos(ϕ− ψ )) rj .

The quantities ϕ and r are expressed in terms of the Delaunay’s variables, using (4), (5), (6).
This procedure leads to the Fourier development of the perturbing function, which can be
written as

R(L,G, `, g) =
∑

m,n∈Z
Rmn(L,G) cos(m` + ng) , (8)
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where Rmn(L,G) denote the Fourier coefficients. In [2] a truncated model has been introduced
by considering a finite Fourier development of the perturbing function, so to have a trigonomet-
ric series (namely, with a finite number of Fourier coefficients). The order of the truncation of
the Fourier development depends upon the physical and orbital parameters of the interacting

bodies. In [2] the asteroids Iris, Victoria and Renzia have been considered and we intend to
study in the present work the dynamical stability of the same objects.
We briefly recall the criterion adopted in [2] for the truncation of the perturbing function. The
planar, circular, restricted three–body model is constructed on the basis of several simplifying
assumptions. Among the neglected contributions, the most significative ones (in the case of
Iris, Victoria and Renzia) are the following: the eccentricity of Jupiter’s orbit, the relative

inclination of the asteroid and of Jupiter orbits, the gravitational influence of Mars and Saturn.
Since we have neglected these effects, we shall consistently drop in the series expansion of R
all those Fourier terms, whose size is of the same order of magnitude or less than the neglected
contributions. For the asteroids Iris, Victoria and Renzia, this criterion leads to the definition
of a truncated model as described by the Hamiltonian function

H(L,G, `, g) = − 1

2L2
− G + ε R(L, G, `, g) , (9)

where

R(L,G, `, g) = −1− L4

4
(1 +

9

16
L4 +

3

2
e2) +

L4e

2
(1 +

9

8
L4) cos `− 3

8
L6(1 +

5

8
L4) cos(` + g)

+
L4e

4
(9 + 5L4) cos(` + 2g)− L4

4
(3 +

5

4
L4) cos(2` + 2g)− 3

4
L4e cos(3` + 2g)

− 5

8
L6(1 +

7

16
L4) cos(3` + 3g)− 35

64
L8 cos(4` + 4g)− 63

128
L10 cos(5` + 5g) .

We remark that the above Hamiltonian function is expressed in terms of two degrees of freedom;
therefore, the dimension of the phase space is 4, the constant energy surfaces have dimension 3,
while invariant tori are 3–dimensional. As a consequence, invariant tori separate the constant
energy surfaces, providing a strong stability property, in the sense of confinement in the phase
space. The unperturbed frequency (i.e., when ε = 0) is given by the vector (ω1, ω2) = (Ω,−1)

with Ω = 1
L3 ; we shall be interested to compute the modulus of the ratio of the frequency’s

components, |ω1
ω2
| = | 1

L3 |.

We consider also a reduced model in which we further neglect the last three Fourier components.
This procedure gives us a measure of the weight associated to different Fourier terms. In this
perspective, we consider (9) with R given by

R(L,G, `, g) = −1− L4

4
(1 +

9

16
L4 +

3

2
e2) +

L4e

2
(1 +

9

8
L4) cos `− 3

8
L6(1 +

5

8
L4) cos(` + g)

+
L4e

4
(9 + 5L4) cos(` + 2g)− L4

4
(3 +

5

4
L4) cos(2` + 2g)− 3

4
L4e cos(3` + 2g) .

2.3 The planar, elliptic, truncated problem

In the present section we assume that P2 orbits around P0 on an elliptic orbit with eccentricity
equal to e′ = 0.0482 (i.e. the eccentricity of Jupiter). In this case, we cannot perform anymore
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the change of variables (1). The motion is described by a Hamiltonian function with three
degrees of freedom; therefore, invariant tori do not provide the stability through confinement
of the phase space: in fact, the dimension of the phase space is 6, the constant energy level
surfaces have dimension 5 and consequently the 3–dimensional invariant tori do not separate

the phase space. Using the same criterion adopted in section 2.2, we retain only the most sig-
nificant Fourier terms in the series development of the perturbing function. The corresponding
Hamiltonian takes the form:

H(L,G, Ψ, `, g, ψ ) = − 1

2L2
+ Ψ + εR(L,G, `, g, ψ ) ,

where R(L, G, `, g, ψ ) depends also on e′ and it is given by

R(L,G, `, g, ψ ) = −1− L4

4
(
5

2
+

9

16
L4 − 3

2

G2

L2
+

3

2
e′2) + L4 e

2
(1 +

9

8
L4) cos(`)

−3

8
L6(1 +

5

8
L4) cos(` + g − ψ ) +

L4

4
e(9 + 5L4) cos(` + 2g − 2 ψ )

−L4

4
(3 +

5

4
L4) cos(2` + 2g − 2 ψ )− 3

4
L4e cos(3` + 2g − 2 ψ )

−5

8
L6(1 +

7

16
L4) cos(3` + 3g − 3ψ )− 35

64
L8 cos(4` + 4g − 4 ψ )

− 63

128
L10 cos(5` + 5g − 5 ψ )− L4(

3

4
e′ +

45

64
L4e′) cos(ψ )

−L4(
21

8
e′ +

45

32
e′L4) cos(2` + 2g − 3ψ )

−L4(−3

8
e′ +

5

32
e′L4) cos(2` + 2g − ψ ) .

2.4 The circular, inclined, truncated problem

In this section we consider the motion of P2 around P0 as circular, but we assume that the

relative inclination i between the planes of the orbits of P1 and P2 is different from zero.
According to [3] we introduce a new pair of conjugated variables defined as (H,h), where

H = G cos i and h is the longitude of the ascending node. One easily finds that the Hamiltonian
function depends on the difference h − ψ . Therefore, we perform the symplectic change of
coordinates:

` = ` L = L

g = g G = G

p = h− ψ P = H ,

with (P, p) being conjugated variables. In terms of these quantities, we write the Hamiltonian
function as

H(L,G, P, `, g, p) = − 1

2L2
− P + εR(L, G,P, `, g, p) ,

where, denoting by γ =
√

1
2 −

P
2G , one has

R(L,G, P, `, g, p) = −1− L4(
1

4
+

3

8
e2 +

9

64
L4 − 3

2
γ2)
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−(
3

4
− 3

2
γ2 +

5

16
L4) cos(2` + 2g + 2p)

−(−1

2
e + 3γ2e− 9

16
eL4) cos(`)− (

3

4
e − 3

2
γ2e) cos(3` + 2g + 2p)

−(−9

4
e +

9

2
γ2e− 5

4
eL4) cos(` + 2g + 2p)− 3

2
γ2 cos(2` + 2g)

−3

2
γ2 cos(2p)− 3

2
γ2e cos(3` + 2g) +

9

2
γ2e cos(` + 2g) +

3

2
γ2e cos(` + 2p)

+
3

2
γ2e cos(`− 2p)− L6(

3

8
+

15

64
L4) cos(` + g + p)

−(
5

8
+

35

128
L4)L6 cos(3` + 3g + 3p)

−35

64
L8 cos(4` + 4g + 4p)− 63

128
L10 cos(5` + 5g + 5p) .

Since the phase space has dimension 6, the separation into invariant tori is not possible also in
the present case.

3 The frequency analysis

The determination of the fundamental frequencies can be obtained through frequency analysis,
following the well–known standard method introduced by J. Laskar ([7], [8] to which we refer
for details). For a two–dimensional Hamiltonian system, frequency analysis allows to compute
the two fundamental frequencies. Roughly speaking, we study the behaviour of the so–called

frequency–map, provided by the variation of the absolute value of the ratio of the two main
frequencies as a function of the initial value of one action variable (the initial angles can be set
to zero).
From the frequency map, we can infer some properties concerning the stability of the dynamics.
In particular, let us consider an object with fixed frequency (ω1, ω2); we shall see that its

stability is strictly related to the behaviour of the dynamics in a suitable interval around the
ratio |ω1

ω2
|.

To be concrete, in the case of the planar, circular, restricted three–body problem, we proceed
as follows. Let us call the fundamental frequencies (ωL, ωG) and let γ ≡ |ωL

ωG
|. Let L0 be the

initial value of L; we compute the ratio γ ≡ |ωL
ωG
| and we vary L0 by looking at the graph of

the frequencies’ ratio versus L0. In order to characterize regular and chaotic regimes, we follow
the criterion introduced in [7], [8] (see also [9]):
a) If the curve is regular in a neighbourhood of γ (i.e., monotonically increasing or decreasing),
then we expect to find a region of invariant tori. We remark that this criterion is valid for slightly
perturbed Hamiltonian systems. For example, let us consider the planar–circular problem;

then, up to terms of order ε one finds γ = |1/L3|. Therefore, the monotone behaviour of γ is
preserved at least for low values of the perturbing parameter. In particular, the frequency ratio
is monotone within a large portion of the phase space, where KAM tori still survive.
b) A resonant regime is characterized by a straight line, showing no variation of the frequencies’
ratio on a significant region of the graph. To clarify this criterion, let us consider the analogy

9



with the librational regime of the pendulum: when computing the frequencies in the librational
region of the phase space, one finds that all frequencies are the same (in particular, they are
equal to zero). The same phenomenon appears in resonant zones of more general systems.
c) A chaotic region is described by consecutive sudden jumps of the frequencies’ ratio. Actually,

the frequencies are defined only for regular curves; when entering a chaotic region, the numerical
algorithm provides values of the frequencies which significantly change from one orbit to a
nearby trajectory (the computed value of the frequency might also change with time on the
same orbit). This phenomenon gives rise to large variation patterns of the frequency map.

When dealing with the planar, circular, restricted three–body problem (either with the
full or truncated Hamiltonian), we implement frequency analysis according to the following
procedure. Fix a level energy E = E0 and a value ε = ε0 for the perturbing parameter. Set the

initial data as L = L0, ` = 0, g = 0 (the value of L0 can be chosen arbitrarily). In order to find
G = G0, we solve the equation

E0 = − 1

2L2
0

−G + ε0R(L0,G, 0, 0) ,

implementing a Newton method. We integrate the equations of motion by a IV order Runge–
Kutta method with fixed step–size and we compute the main frequencies (ωL, ωG) by imple-
menting frequency analysis on the set of data (L(tk) + `(tk),G(tk) + g(tk))1, where tk = 0.1 · k
is the integration time. Finally, we compute the ratio | ωL

ωG
| that we plot as a function of L0 for

different values of L0 with step–size 2 · 10−5.

In the case of the planar, elliptic, restricted three–body problem, we fix again E = E0,

ε = ε0 and we set the initial values as `0 = g0 = t0 = 0, L = L0, G = G0. Here L0 is arbitrary,
G0 is calculated as in the circular problem, while the value Ψ = Ψ0 is computed in order to
preserve the energy as

Ψ = E +
1

2L2
0

− ε0R(L0,G0, 0, 0, 0) .

Frequency analysis is performed over the set of data (L(tk)+Ψ(tk)+`(tk), G(tk)+g(tk)+ ψ (tk)),
where tk = 0.1·k is the integration time. Finally, we compute the ratio | ωL

ωG−ωΨ
|, which is plotted

versus L0 for different values of L0 with step–size 2 · 10−5.

For the circular, inclined, restricted three–body problem, we fix ε = ε0, the energy level
E = E0 and the initial values as `0 = g0 = p0 = 0, L = L0, G = G0, where L0 is arbitrary
and G0 is computed as for the planar, circular problem. If i denotes the relative inclination
of the orbits, the initial value of P = P0 is defined as P0 = G0 cos i. Frequency analysis is

implemented using the set of data provided by (L(tk) + `(tk) + P (tk),G(tk) + g(tk) + p(tk)),
where tk = 0.1 · k is the integration time. We compute the ratio | ωL

ωG+ωP
|, plotted versus L0 for

different L0’s with step–size 2 · 10−5.

1Numerical experiments show that the best result is achieved when the signal is obtained by mixing action
and angle variables.
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Table 1:

Asteroid aA (AU) e i (deg)

Iris 2.386 0.230 5.524
Victoria 2.335 0.220 8.363
Renzia 2.263 0.294 1.882

4 Stability of asteroids and of nearby invariant tori

We consider the motion of three bodies in the framework of one of the models described
in section 2, where we identify P0 with the Sun, P1 with an asteroid and P2 with Jupiter.
In particular, we are interested in studying the dynamics of the asteroids Iris, Victoria and
Renzia. Their elliptic elements (see [12]) are listed in Table 1: aA represents the major semiaxis
in Astronomical Units AU (1 AU = 150 ·106 km is the average Earth–Sun distance), e denotes

the orbital eccentricity and i is the inclination (measured in degrees).

We remarked that the stability property, in the sense of confinement in phase space, can

be obtained only in the two–dimensional case of the planar, circular, restricted three–body
problem. In this context, invariant tori provide a separation on the constant energy surfaces.
The idea developed in [2] is to fix a level of energy and to prove the existence of two invariant tori
bounding, from above and below, the motion of the asteroid. We shortly recall such procedure
referring to [2] for the complete details.

Let mS = 1.991 · 1030 kg and mJ = 1.9 · 1027 kg be the observed masses of the Sun and
Jupiter, respectively. Define m2 = mJ

mS+mJ
, m0 = 1−m2, µ = 1

m
2/3
0

; then, let Lobs = µ
√

m0a and

Gobs = Lobs

√
1− e2, where a is the major semiaxis in normalized Jupiter–Sun distance, i.e.

a = aA
aJ

, where aJ = 5.203 AU . The quantities aA and e are given in Table 1. Let ωobs = 1
L3

obs
be

the observed frequency of the asteroid. The energy level is chosen as the unperturbed energy
(i.e., taking ε = 0) of the asteroid: Eobs = − 1

2L2
obs
− Gobs. Moreover, let L̃± = Lobs ± 0.001

and define ω̃± = 1
L3
±
. Compute the continued fraction representation up to the order 5 of the

frequencies ω̃±:

ω̃± = [a1;a2, a3, a4, a5, ...] = a1 +
1

a2 + 1
a3+ 1

a4+ 1
a5+...

.

Modify ω̃± by adding a tail of one’s after the 5th term of the continued fraction expansion;
in this way, one obtains irrational numbers ω± = [a1;a2, a3, a4, a5, 1

∞], satisfying the so–called
diophantine condition:

|ω± −
p

q
|−1 ≤ C±|q|2 , ∀ p, q ∈ Z , q 6= 0 , (10)

for some positive real constants C± which can be evaluated by number theory (see [2]). Fi-
nally, let L± = 1

ω
1/3
±

and G± = − 1
2L2
±
− Eobs, where the eccentricity is provided by e± =

√
1− (G±

L±
)2. We fix the energy level of the asteroid by selecting E = Eobs + εR(Lobs,Gobs),

11



Table 2:

Asteroid Eobs ωobs ω− ω+

Iris −1.749108 3.220143 3.204407 3.232969
Victoria −1.767380 3.326216 3.309769 3.339560
Renzia −1.779669 3.486213 3.460913 3.508431

where R(Lobs, Gobs) is the average over the angle variables of the perturbing function related
to the truncated model presented in section 2.2:

R(Lobs, Gobs) = −1− L4
obs

4
(1 +

9

16
L4

obs +
3

2
e2
obs) ,

where eobs =

√
1− G2

obs

L2
obs

. We report in Table 2 the values of the unperturbed energy level, of the

observed frequency ωobs and of the frequencies of the bounding tori, ω− and ω+ (using proper
units).

The existence of the bounding tori with frequencies (ω−,−1) and (ω+,−1) has been ob-
tained in [2] by applying a computer–assisted isoenergetic KAM theorem. Such theory can be
applied under quite general assumptions; a necessary requirement is that the frequency satis-

fies the diophantine condition (10). The existence of invariant surfaces is proven for values of
ε ≤ 0.001, showing a full agreement between the theoretical result and the realistic physical
value corresponding to the Jupiter-Sun mass–ratio. We refer to [2] for an exhaustive explanation
of the results.

In order to provide a numerical investigation of the model adopted in [2], we apply fre-
quency analysis to compute the break–down value of the tori with frequencies (ω−,−1) and

(ω+,−1). We recall that when the confinement property holds, the existence of such tori implies
the stability of the asteroid; on the contrary, if one of the two tori ceases to exist, one cannot
infer instability of the motion of the minor body: for example, there could still exist bounding
tori with different frequencies.

We apply the frequency analysis with a twofold aim:
1) to determine the break–down value of the tori with frequencies (ω−,−1) and (ω+,−1),

2) to provide numerical evidence of the stability of the asteroid, whenever the confinement
property applies.

Let us denote by εc the critical value of the perturbing parameter at which the transition from
stability to instability occurs. We present the results in the following form (see Tables 3, 4, 5;
compare also with Figures 1, 2, 3):

i) we provide an interval, say ε− < εc ≤ ε+, such that if εc ≤ ε−, then both lower and

upper bounding tori exist, while if εc ≥ ε+ both tori have disappeared. This means that in
the case of the planar, circular, restricted three–body problem, for εc ≤ ε− the motion of the
asteroid is confined on the preassigned energy level between the two bounding tori;

ii) we provide some intermediate values (denoted by ”IV”) at which one of the two tori
still survives, while the other torus disappeared.

12



Table 3:

Asteroid Complete IV Truncated IV

Iris 0.03 < εc ≤ 0.05 0.04 0.06 < εc ≤ 0.08 0.07
Victoria 0.03 < εc ≤ 0.051 0.04–0.05 0.05 < εc ≤ 0.08 0.06–0.07
Renzia 0.06 < εc ≤ 0.08 0.07 0.01 < εc ≤ 0.03 0.02

Table 4:

Asteroid Reduced IV

Iris 0.08 < εc ≤ 0.1 0.09
Victoria 0.08 < εc ≤ 0.1 0.09

Renzia 0.02 < εc ≤ 0.03 0.025

The results for the planar, circular, restricted three–body model in the framework of the
complete and truncated Hamiltonians are the presented in Table 3.

We have investigated also a reduced truncated Hamiltonian model, in the context of the
planar, circular, restricted three–body model. More precisely, in the Fourier expansion of the
perturbing function, we dropped the terms related to cos(3` + 3g), cos(4` + 4g), cos(5` + 5g).

The results are presented in Table 4.

Finally, we provide in Table 5 the results concerning the planar–elliptic and circular–

inclined models.

A graphical inspection is provided by Figures 1, 2, 3. Concerning the planar, circular,

restricted, three–body model, the frequency is given by a two–dimensional vector, say (ωL, ωG),
which is computed by frequency analysis. In Figure 1 we display the modulus of the ratio of
the components |ωL

ωG
| versus the initial action variable L0. In Figure 1a we use the truncated

Hamiltonian (see section 2.2) and we provide the results for different values of ε. We recall
that in the unperturbed case, the second component of the frequency vector is -1, so that

the modulus of the ratio of the two components of the frequency vector of the bounding tori
coincides with ω− or ω+; to this end, the lines corresponding to the values Ω− ≡ |ω−−1 | and
Ω+ ≡ |ω+

−1 | are also displayed. We notice that for ε = 0.05 both tori exist, while only the upper

Table 5:

Asteroid Elliptic IV Inclined IV

Iris 0.05 < εc ≤ 0.07 0.06 0.06 < εc ≤ 0.08 0.07
Victoria 0.05 < εc ≤ 0.07 0.06 0.06 < εc ≤ 0.08 0.07
Renzia 0.08 < εc ≤ 0.11 0.09–0.1 0.09 < εc ≤ 0.13 0.1–0.12
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torus survives for ε = 0.06 − 0.07 and both tori disappeared at ε = 0.08, since there are no
orbits with values of the frequencies in the interval [Ω−,Ω+]. Let us remark that the abrupt
interruption for larger L0 is due to the condition of existence of G0. Indeed, the eccentricity is

related to the action variables by e =
√

1−G2
0/L2

0: to have a physical meaning, the eccentricity
must be a real number, implying that the system must satisfy the condition that G0 ≤ L0.
This argument imposes an upper bound on the choice of L0.
We remark that this criterium of breakdown of stability is a bit different from the usual one
based on the transition from a monotonic variation of the frequency map to a noisy one.

A similar analysis is performed in the case of the reduced Hamiltonian (see section 2.2), which
contains a minor number of Fourier terms than in the case of the truncated Hamiltonian. The
results are presented in Figure 1b for ε = 0.08, 0.09, 0.1.

Let us consider now the complete Hamiltonian (see section 2.1). For the actual value of
the Jupiter–Sun mass–ratio, the results concerning the truncated and complete Hamiltonians
show the same dynamical features. As far as the strength of the perturbation is increased, the

two models differ consistently. Indeed, Figure 2 shows the results of the frequency analysis for
ε = 0.03, 0.04 and 0.051. The motion seems to be regular for ε = 0.03 and both tori with
frequencies (ω−,−1) and (ω+,−1) survive the perturbation. On the contrary, for ε = 0.04 only
one torus survives, while for ε = 0.051 both tori disappeared.

As shown in Figure 3, the truncated model still preserves a regular character, even when
the effects of the eccentricity of Jupiter or of the mutual inclination are considered. In particular,

Figure 3a concerns the planar, elliptic, restricted model; in order to compare the results with
those obtained for the truncated model, we plotted the quantity | ωL

ωG−ωΨ
| versus L0. The results

for the (truncated) inclined model are displayed in Figure 3b, where the quantity | ωL
ωG+ωP

| is
plotted versus L0.

5 Conclusions

The Fourier analysis performed in the previous section allows to draw the following conclusions.

i) We compute an approximation of the critical break–down value of the invariant surfaces with
frequencies (ω−,−1) and (ω+,−1), to be compared with the analytical results obtained in [2].

We remark that one could apply alternative numerical methods for the determination of the
transition value; however, the actual techniques are often adapted to very simple mathematical
problems and they do not provide reliable results for more sophisticated models, like the one
studied in the present work.

ii) In the context of the planar, circular, restricted three–body problem, the existence of the
bounding tori guarantees the confinement of the asteroid; therefore, we can interpret the results

shown in Table 3 as a lower bound on the stability of the minor body. For example, there is
numerical evidence of the stability of Iris and Victoria for any mass–ratio ε ≤ 0.03, when using
the complete expression of the perturbing function. When adopting the truncated model, the
frequency analysis suggests that Iris is stable for any ε ≤ 0.06 and Victoria is stable for any
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ε ≤ 0.05.

iii) The frequency analysis provides a tool for comparing the different models described in
section 2. More precisely, we start by evaluating the difference between the complete and
truncated Hamiltonians. The critical values are different by a factor about equal to 2; however,
the astronomical value of the Jupiter–Sun mass–ratio (ε ' 10−3) is well below the critical

estimates reported in Table 3.
Focussing on the truncated Hamiltonian, we test its validity by lessening the number of Fourier
terms retained in the series development of the perturbing function. A comparison between
Tables 3 and 4 shows that a minor number of Fourier terms is still sufficient to compute the
critical break–down values with good accuracy.
Finally, in order to evaluate the effect of the eccentricity of Jupiter and of the inclination of

the orbits, we performed the Fourier analysis on the models described in section 2.3 and 2.4. In
the cases of Iris and Victoria, the results presented in Table 5 do not differ significantly from
the values reported in Table 3 for the planar–circular truncated case, thus providing a further
validation of the efficacy of the truncated model. A more evident discrepancy is found when we
investigate the asteroid Renzia, due to the fact that its frequency is close to a 7/2 resonance.

We believe that the strategy proposed in this paper can be conveniently applied to a wide
set of asteroids, providing useful information about the dynamics of minor bodies. We plan to

continue along these lines in a future work.
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Figure 1: Results of the frequency analysis for the asteroid Victoria in the framework of the
planar, circular, restricted, three–body model: a) truncated Hamiltonian, b) reduced Hamilto-
nian.
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Figure 2: Results of the frequency analysis for the asteroid Victoria in the framework of the
planar, circular, restricted, three–body model, using the complete Hamiltonian function.
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Figure 3: Results of the frequency analysis for the asteroid Victoria in two different settings:
a) the planar, elliptic, restricted, three–body model, b) the inclined, circular, restricted, three–
body model.
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