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Abstract

For an arbitrary holonomic mechanical system an integrator is derived by
applying an extended principle of stationary action to the manifold of those
system paths which are parabolic with respect to the system of generalized
coordinates under consideration. A modified variational derivative of the
action integral is shown to agree with the force that the environment of the
system exerts on it. This generalizes the characterization of free motion in
terms of a vanishing variational derivative. As a numerical example, the
method is applied to the damped harmonic oscillator. It is shown that the
method follows accurately a change of the amplitude by a factor of 1024
within 20 oscillation periods when taking only 32 steps for one such period.
The computed oscillation gets out of phase by an angle of 11.5 degrees over
these 20 oscillations.

1 Introduction

Modeling the dynamics of granular media (e.g. [14]) is presently gaining accep-
tance in industry as a method to generate results of practical relevance. The method
of the present paper comes from this field.

Although there is no need to develop fundamentally new methods for numerically
solving the equations of motion for granular systems, the experience-based prefer-
ences for methods from related application fields such as celestial mechanics and
molecular dynamics may not be reliable guides in this field.

In granular media the interaction terms are typically expensive to compute since
they depend on many parameters, such as the location and size of the zones where
two irregularly shaped bodies overlap. Consecutive evaluations of the interaction
term result in a sequence of values which is irregular enough to fool polynomial
extrapolation more often than not. So, higher order integration methods can’t show
the performance which they show in more regular problems.
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This defines the topic of the present paper, which is the construction of one-stage,
one-step integrators for rather general mechanical systems. The motivation for
this study was the desire to understand why a specific such method, which will be
called thedirect midpoint methodin the following, performs so well in the granular
media application [9]. In the most simple framework this method is given by the
following self-explanatory integrator formula

x(t +∆t) = x(t)+v(t)∆t +a
(∆t)2

2
,

v(t +∆t) = v(t)+a ∆t ,

a : =
F(t + ∆t

2 ,x(t)+v(t)∆t
2 )

m
.

The question of particular interest is how to generalize this scheme to velocity
dependent forces which are indispensable for achieving inelastic collisions of par-
ticles. In the application mentioned above a particle is idealized as a rigid arrange-
ment of strongly overlapping spheres each of which generates and feels forces
according to a soft particle model. Friction is very conveniently introduced as hys-
teresis of elastic forces: during compression, the spheres exchange a stronger force
than during release1 [1].

The agenda of this paper is not to describe the direct midpoint method and its per-
formance in the complex framework of [9] where particle positions are described
by elements of the Euclidean group of motions in space and velocities as elements
of the Lie algebra of this group. Instead, the method is studied here within the tradi-
tional framework of theoretical mechanics which employs generalized coordinates,
generalized forces, and a general Lagrangian.

The actual approach is similar to that in [8]. It applies the action principle directly
to the state change caused by a single integrator step and arranges things such that a
deterministic equation for this state change results. This differs considerably from
the usual method to mimic the derivation of the Euler-Lagrange differential equa-
tions as difference equations for discrete trajectories. As is shown in this paper, a
significant advantage of thisone step variational methodis its ability to cope with
forced systems without formal complications.

This approach leads to a family of simple algorithms, with the direct midpoint
method as one member, distinguished by simplicity and, in the example of Sec-
tion 7, also by performance. With expressive exception of the direct midpoint
method, these methods are not presented with the intention to add to the toolbox
of the computational physicist. Rather they are considered here since they emerge
naturally in the exploitation of predictive applications of the action principle. So,
they put the main method into perspective and help to appreciate the unique sim-
plicity of this method.

1 such forces depend obviously on the velocity, although more on their direction than on their
magnitude
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This approach also unveils a general relation (the theorem in Section 5) between
the Euler-Lagrange differential operator and a differential operator acting on the
action integral associated with a single time step. This relation between a construct
of time-continuous mechanics and one of time-discrete mechanics, which will be
called thesmall step action principle, should be considered the main result of this
paper. The main goal of this paper would be reached if readers would start testing
the direct midpoint method in the framework of their work. That this could happen
also outside computational mechanics is indicated in an informal subsection of
Section 6.

2 General framework

Let us consider a holonomic mechanical systemΣ and restrict our interest to a part
Q of the configuration space on which a single systemφ of n generalized coordi-
nates can be introduced. It would be misleading to consider the set of coordinate
n-tuples simply as a subset ofRn since the primary arithmetical operations on co-
ordinates (those that makeRn a linear space overR) do, as a rule, not correspond to
operations that can be defined in terms of physical quantities. Only special linear
combinations of coordinaten-tuples are meaningful:

1. Linear combinations the coefficients of which add up to 0 are vectors. The
most frequently used type of such linear combinations is the difference of
two points which determines atangent vectorif the points are sufficiently
close together. More complex combinations appear in (27).

2. Linear combinations the coefficients of which add up to 1 (i.e. weighted
means) are points. The most frequently used type of such a linear combina-
tion is the mean of two points with equal weights. This determines the mid
point if the points are sufficiently close together.

We take this into account by considering coordinaten-tuples as elements of the
affine point spaceX over Rn. It may happen that a computation concerningΣ
returns a pointx ∈ X to which there corresponds no physical system configura-
tion or no system configuration for which the systemφ of coordinates is adequate.
Evaluating some system related functionf at x will then not be defined. When
this occurs, it may indicate an interesting system behavior that should be analyzed
based on the information available in that specific case. In computational physics
or physical modeling it is most natural to assume that the mathematical represen-
tation of the physical system is done in a way that such ‘pathologies’ can’t happen
(at least not in the first place): all pertinent functions are defined for all values of
the arguments if only their type2 (irrespective of the value) matches the declaration

2 see e.g. [13] for type theory, which is a more convenient basis for constructive mathematics and
modeling than set theory on which mainstream mathematics still relies.
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of the function. If during a computation a function gets evaluated for an argument
value for which it is only by artificial regularization that a result can be created, the
function should automatically document this event. The documentation of excep-
tional intermediate results is to be taken into account in drawing conclusions from
a computation. Even simpler than making all functions ‘everywhere defined’ is to
assure that they aresmooth, i. e. differentiable to any order. A typical action of
this kind is to replace 1/r in the Coulomb potential by 1/

√
r2 + ε2. Throughout

this paper,C(Y,Z) is used as synonymous toC∞(Y,Z), the set of smooth functions
f : Y → Z (and not the continuous functions for which this symbol is more often
used).

On the ubiquity of smooth functions

For functions which enter a computational model in the form of discrete data that
have to be interpolated, aC∞-representation might not be obvious since polynomial
interpolation is known to be not adequate for more than a few points, and spline
curves are notC∞. Although it seems not to have been spelled out in the literature,
there is a simple and efficientC∞-interpolation method [5] based on the remarkable
meromorphic function

ρ(z, p) :=
1

1+e( 1
z+ 1

z−1 )p
,

wherep is a real parameter for which there are reasons3 to choosep≈ 0.81. For
realz∈]0,1[ this is a strictly increasing function which connects the points(0,0) and
(1,1) and has a symmetry center at( 1

2 , 1
2) and the function

r(x) := (0, ρ(x, p), 1) for (x≤ 0, 0 < x < 1, x≥ 1) respectively

isC∞(R,R) for all p> 0. For a list(xi ,yi)i∈{1,...,m} of interpolation points we employ
apartition of unity(wi) to build the functionf

f (x) :=
m

∑
i=1

wi(x) fi(x) ,

wi(x) :=r i−1(x)− r i(x) , i ∈ {1, . . .,m} ,

r0(x) :=1 , r i(x) := r
( x−xi

xi+1−xi

)
, i ∈ {1, . . .,m−1} , rm(x) := 0 ,

f1 :=interpolating line for(x1,x2;y1,y2) ,

fi :=interpol. parabola for(xi−1,xi ,xi+1;yi−1,yi ,yi+1) , i ∈ {2, . . .,m−1} ,

fm :=interpolating line for(xm−1,xm;ym−1,ym) ,

which is easily shown to be a function of the desired kind:f ∈C∞(R,R) and f (xi) =
yi for all i ∈ {1, . . .,m}. For eachx only two termswi contribute so that the method is
only twice as expensive as local quadratic interpolation, and unlike splines, it requires
no initializing run. It is straightforward to extend the method fromR to Rn. Also,
function r can directly be used to turn piecewise defined functions likef (x) := g(x)
for x > 0 and f (x) := h(x) else, into smooth functions ifg andh are smooth.

Dynamics is concerned with configurations that change with time, i.e. curves
(paths, trajectories)

q∈C(T,X) ,
3TheL2-norm of the second derivative ofr is minimal for p = 0.810747...
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whereT := [ti , t f ] is the time span under consideration. We assume that the physics
of Σ is completely defined by the basicLagrange-d’Alembert principle, e.g. [7]
p. 421 (3.1.1), which subsequently will be formulated in a way that it defines all
the quantities to be used in the subsequent deductions. It will also be referred to
simply as theaction principle.

For objectsΣ, X, andT = [ti , t f ] as introduced so far, there exist functions

L : T×C(T,X) → R ,

F : T×C(T,X) → Rn , G : T×C(T,X) → Rn ,

such that for allq∈C(T,X), and all

δq∈C(T,Rn) such that δq(ti) = δq(t f ) = 0 4

the equation
E(L,q,δq)+W(F,q,δq)+W(G,q,δq) = 0 (1)

holds, where

E(L,q,δq) :=
d
dλ

∫ t f

ti
dt L(t,q+λδq)

∣∣∣
λ=0

, (2)

W(F,q,δq) :=
∫ t f

ti
dt δq(t) ·F(t,q) , (3)

W(G,q,δq) :=
∫ t f

ti
dt δq(t) ·G(t,q) . (4)

The physical meaning ofG(t,q) is theguiding forcethat the environment has to
exert on systemΣ at timet in order to let the pathq happen.F(t,q) is an internal
force at timet that is not assumed to be of the kind that can be included in the
LagrangianL. If F(t,q) = 0 for all t ∈ T and allq∈C(T,X) the systemΣ is said
to bepurely Lagrangian.

The functionsL, F, andG are instantaneous(‘local in time’) in the sense that
their values at(t,q) can be expressed in terms ofq(t) and the time derivatives
q̇(t), q̈(t),

...
q(t), . . . .

For mechanical systems that occur in nature or in text books on technical mechan-
ics the Lagrangian needs no derivatives higher than the first one5 and this is what
will be assumed in the following. We thus have a function

L : T×X×Rn → R , (t,x,v) 7→ L(t,x,v) (5)
4 see Figure 1
5 man-made mechanisms containing motors, sensors, and signal processors might well need

higher derivatives
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which allows writingL(t,q) = L(t,q(t), q̇(t)) and

E(L,q,δq) =
∫ t f

ti
dt δq(t) · [(∇xL)(t,q(t), q̇(t))− d

dt
(∇vL)(t,q(t), q̇(t))] . (6)

This allows exploiting the arbitrariness ofδq to get from equations (1), (2) , (3),
(4), and (6)

(∇xL)(t,q(t), q̇(t))− d
dt

(∇vL)(t,q(t), q̇(t))+F(t,q)+G(t,q) = 0 . (7)

Finally we specify the forcesF such that they depend on the same variables as the
Lagrangian:F(t,q) = F(t,q(t), q̇(t)) and get a function

F : T×X×Rn → Rn , (t,x,v) 7→ F(t,x,v) . (8)

In all that follows we assume

L ∈C(T×X×Rn,R) , F ∈C(T×X×Rn,Rn) .

Then we conclude from (7) thatG(t,q) = G(t,q(t), q̇(t), q̈(t)) with a function

G : T×X×Rn×Rn → Rn , (t,x,v,a) 7→ G(t,x,v,a) (9)

for which (7) and (8) entail the representation

Gi(t,x,v,a) = Lvivk(t,x,v)ak +Lvixk(t,x,v)vk

+Lvit(t,x,v)−Lxi (t,x,v)−Fi(t,x,v) ,
(10)

where the indexes toL denote partial derivatives. In terms of differential operators
this can be rewritten as:

G(t,x,v,a) =
(
[(∂t + v·∇x + a·∇v )∇v−∇x]L−F

)
(t,x,v) . (11)

An autonomous path, i.e. a path that occurs ifΣ does not interact with external
systems, is characterized by vanishing guiding force so that it satisfies the condition

G(t,q(t), q̇(t), q̈(t)) = 0 for all t ∈ T (12)

which is theEuler-Lagrange differential equationof the systemΣ. It is also said to
be anequation of motionof the system.

The totality of autonomous paths gives rise to theevolution mapwhich associates
with each subinterval̃T = [t1, t2] of T the function

Ψ(T̃) : X×Rn → X×Rn , (x,v) 7→ (q(t2), q̇(t2)) , (13)

whereq is the trajectory defined by the equation of motion (12) and the initial con-
ditionsq(t1) = x, q̇(t1) = v. For each partitioñT = ∪n

i=1T̃n we have the important
property

Ψ(T̃) = Ψ(T̃n)◦Ψ(T̃n−1)◦ . . .◦Ψ(T̃1) . (14)
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An integrator or small step evolution mapfor the systemΣ (or its equation of
motion) is a functionΨ̃ which has the same domain and target asΨ and has the
property that replacing the factorsΨ(T̃k) on the right hand side of equation (14)
by Ψ̃(T̃k) conserves the equation to any reasonably desired degree of accuracy
if the intervalsT̃k are chosen sufficiently small. It is a well understood fact that
integrators for very complicated physical systems can be given as rather simple
finite formulas whereas a finite formula forΨ(T̃) may not exist. This is the basis
for computational models of complex dynamical systems.

The physical meaning ofG

With the advent of programmable stepper motor drives it became
easily possible to enforce the space-time path of a mechanical test
system and to record the (potentially strong) forcesG that the driving
mechanism had to exert on the test system to make it follow that path.
Even without this technology we can feel the strong forces needed to
suddenly elevate a massive body (think of shot-putting) for which the
free motion would be the free fall. The usual presentation of the ac-
tion principle considers only paths that deviate from autonomous ones
slightly and therefore need only small guiding forces. These forces
don’t enter the result of the reasoning. For following the thread of
thought in the present article it helps to be aware ofG as a measurable
response quantity that is associated with a mechanical system just as,
say, the impedance with a two-terminal electric circuit. We will en-
counter this quantityG in many places in this paper, particularly in
equation (60) of the main theorem. The most important feature ofG is
that, unlike forces and the Lagrangian, it depends not only on(t,x,v),
which is a descriptor for the (dynamical)stateof the system, but also
on the accelerationa, as is particularly obvious in the shot-putting ex-
ample. See also (88) for an example in terms of a formula. Knowing
the expressionG is more than simply knowing an equation of motion:
Multiplying G by any non-zero factor will again provide an equation
of motion, but it will loose the capability to predict reaction forces of
the system to the out-side world.

Needless to say that the forcesF andG are generalized forces re-
ferring to the generalized coordinate systemφ. So they may not be
forces by dimension but the quantityF · q̇ has always the dimension
of a power. As is well known, the concept of generalized coordinates
arose in mechanics as an effective method to describe constraint mo-
tion and the systems for which this works are namedholonomic. It is
in this sense that the title of this article should be understood.

7



Finally, we introduce the function arising from solving the equationG = 0 for the
accelerationa:

A(t,x,v) := ( thata for whichG(t,x,v,a) = 0 )

= [Lvv(t,x,v)]
−1[F(t,x,v)+Lx(t,x,v)

−Lvt(t,x,v)−Lvx(t,x,v)v] .

(15)

Here, the negative exponent denotes forn > 1 (i.e. for more than one degree of
freedom) the inversion of a matrix. If there are points(t,x,v) where this inverse
does not exist, the behavior of the system certainly deserves special investigation.
A useful universal strategy is to understand the inversion as the always existing
pseudo-inverse. For systems of point particles in Cartesian coordinates the matrix
Lvv is diagonal so that matrix inversion becomes inversion of numbers. IfF , Lx,
Lvt , andLvv depend onv trivially, andLvx vanishes,A depends onv trivially which
gives the time stepping algorithm in Section 6 a particularly simple form.

The expressionA allows writing the equation of motion in explicit form

ẍ = A(t,x, ẋ) (16)

in which the physical context is completely hidden. On the other hand, the
schematic construct

L(t,x,v) :=
1
2

v·v , F(t,x,v) := A(t,x,v) ,

gives (16) back as an equation of motion.

3 Integrators based on parabolic paths

As is clear from (14), an integrator needs to represent the true time evolution of a
system only for small steps of time. As a small step time evolution map it needs
no notion of a trajectory between the initial state and the final state which are con-
nected by this mapping. However, the strategy for obtaining formulas for the small
step evolution certainly will benefit from a parameterized mathematical model for
that hidden trajectory.

It is the methodological decision which underlies the present paper to use a second
order, or parabolic, model based on the system of coordinates under consideration.
This then implies, as will be worked out subsequently, that position change and
velocity change along the short span of time can be parameterized by a single vec-
tor which has the physical meaning of an acceleration. It is important to recognize
that this vector may (and normally will) differ from the actual acceleration of the
system at any instant of time and that the most natural approximate identification
is with the true acceleration in the middle of the time interval. Valuable heuris-
tics concerning a closely related situation is given in [3]. For higher order models
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more parameters would be needed and, as a consequence, parameters would enter
for which physics provides no basic determining relations comparable to the way
acceleration is determined by force.

There is a growing popularity of the thought that physical models could reflect
information processes that in some sense actually occur in nature and that require
only a limited supply of memory and bandwidth (i.e. computational resources), see
e.g. [15] and citations therein. From such a point of view, integrators (rather than
equations of motion) are the fundamental descriptors of motion since already one
variable ranging over an interval between any two different real numbers would
need an infinite number of bits for representation. Providing a single ‘dependent
variable’ such as sin(ωt) would not only need an infinity of bits but also an infin-
ity of computational steps. Who considers integrators as fundamental encodings
of physical laws, could expect simplicity to single out ‘realistic’ encodings as it
singles out realistic equations of motion. From such a point of view, the restric-
tion to the parabolic path model is mandatory since higher order models only add
complexity.

The time interval on which an integrator depends as a variable and that was denoted
T̃ in Section 2 will now be denotedT = [t, t +2τ]. Having decided to make a model
for what happens within this time span, we will need a variable ranging overT.
Since the namet is no longer available for this purpose, we write this variable as
t +h, h∈ [0,2τ] and the derivation dot now denotes derivation with respect toh 6.
Parabolic paths form a subset

C2(T,X) := {q∈C(T,X) |
...
q(t +h) = 0 for all h∈ [0,2τ]} (17)

of C(T,X) where the index 2 stands for a polynomial degree and not for a degree
of differentiability. Obviouslyq ∈ C2(T,X) is uniquely determined by the point
q(t) ∈ X and the two vectors ˙q(t) ∈ Rn , q̈(t) ∈ Rn. Given these objects under
namesx, v, anda we have an explicit representation ofq in the form

q(t +h) = x+hv+
h2

2
a for all h∈ [0,2τ] . (18)

Defining a small step evolution map requires to determineq(t + 2τ) and q̇(t +
2τ) from q(t) = x and q̇(t) = v. All what is not yet fixed is the accelerationa in
representation (18): Givena we complete the definition by

(x,v) 7→ (x+2τv+
(2τ)2

2
a, v+2τa) . (19)

The rule for findinga, when expressed in the form

I(t,x,v,a,τ) = 0 (20)
6 Latin fortunately has two words for time:tempus and - rarely -hora.
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x

t t+τ t+2τ

x1

x2

x2

x3

q

q + δq

Figure 1: geometry of parabolic paths and variations

with a functionI : {t}×X×Rn×Rn×{τ} → Rn, will be referred to as asmall
step equation of motion7. All integrators to be defined in the following will be of
this type, differing only in the formula that defines functionI . These formulas will
be developed systematically in Section 4.

The rest of the present section is devoted to making plausible an important special
case. To start with, we express small step equations of motion in thethree-point
form obtained by denoting a parabolic path by three points at equidistant times as
shown in Figure 1. To put this into formulas we define the two mappings

Π1 : C2(T,X) → YT ,

q 7→ (t,x := q(t),v := q̇(t),a := q̈(t),τ) ,

where YT := {t}×X×Rn×Rn×{τ} ,

Π2 : C2(T,X) → ZT ,

q 7→ (t,x1 := q(t),x2 := q(t + τ),x3 := q(t +2τ),τ) ,

where ZT := {t}×X×X×X×{τ}

(21)

7In all other cases the ‘prefix’small stepqualifies a notion that involves a time step so that the
word smallcarries most of the intended meaning. In the present case, since an equation of motion
does not refer to a time step, both words contribute equally to the intended meaning.
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which are obviously bijective. The three-point form̃I of a small step equation of
motionI is given by

Ĩ ◦Π2 = I ◦Π1 . (22)

The action principle is concerned with variations of a path for which the endpoints
are held fixed. In the present context such a variation corresponds simply to a
variation of the variablex2. So it is a natural idea to expresses the action principle
as a small step equation of motion in the following form:

Ĩ(t,x1,x2,x3,τ) :=
∂S̃
∂x2

(t,x1,x2,x3,τ) ,

where

S̃(t,x1,x2,x3,τ) :=
2τ∫

0

dhL(t +h,x+vh+a
h2

2
,v+ah) ,

wherex,v,a on the right-hand side are given by

(t,x,v,a,τ) := Π1(Π2
−1(t,x1,x2,x3,τ)) .

(23)

In the next section (23) will be deduced from the action principle. It will also be
generalized to not purely Lagrangian systems.

It is interesting to transform also the descriptors of a time step to the three-
point notation: Assume that step data(t,x1,x2,x3,τ) are given then the data
(t + 2τ,x1,x2,x3,τ) for the next time step of arbitrary durationτ are determined
by

x1 = x3

3
2

x2−x1

τ
− 1

2
x3−x2

τ
=

3
2

x3−x2

τ
− 1

2
x2−x1

τ
Ĩ(t +2τ,x1,x2,x3,τ) = 0 .

(24)

This follows easily from the fact that

q = Π−1
1 (t,x,v,a,τ) = Π−1

2 (t,x1,x2,x3,τ) (25)

implies

x1 = x ,

x2 = x+vτ+a
τ2

2
,

x3 = x+v(2τ)+a
(2τ)2

2
,

(26)

and

x = x1 ,

v =
−3x1 +4x2−x3

2τ
=

3
2

x2−x1

τ
− 1

2
x3−x2

τ
,

a =
x1−2x2 +x3

τ2 =
1
τ

(
x3−x2

τ
− x2−x1

τ

)
,

(27)
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and

v3 := q̇(t +2τ) = v+2τa =
3
2

x3−x2

τ
− 1

2
x2−x1

τ
. (28)

Using the original path descriptors the same stepping rule can be expressed much
shorter: Assume that step data(t,x,v,a,τ) are given then the data(t +2τ,x,v,a,τ)
for the next time step are determined by

v = v+2τa ,

x = x+ τ(v+v) ,

I(t +2τ,x,v,a,τ) = 0 .

(29)

The specific small step equation of motion (23) reads then as follows

I(t,x,v,a,τ) :=
[ 2

τ2(τ∇v−∇a)S
]
(t,x,v,a,τ) ,

where

S(t,x,v,a,τ) :=
2τ∫

0

dhL(t +h,x+vh+a
h2

2
,v+ah) .

(30)

Notice thata is not needed to perform the step, it is needed however to enable the
next one. Notice also that the formalism allows to change the time step size from
one step to the next (i.e.τ needs not to equalτ) so that small step equations of
motion generateasynchronous integrators. It could be hard to develop an intuitive
understanding of the differential operator in (30) if its origination from∂∂x2

would
not be known.

4 The action principle applied to parabolic paths

In this section we will see that (23) and (30) are consequences of the action prin-
ciple as formulated in Section 2 and that the derivation naturally extends to non-
conservative forces.

Parabolic path variationsδq form a subset ofC(T,Rn)

Ĉ2(T,Rn) := {δq∈C2(T,Rn) | δq(t) = δq(t +2τ) = 0} , (31)

which together withC2(T,X) makes up an affine space so thatq+ δq is a path
and q1− q2 is a path variation for pathsq1 and q2 satisfyingq1(t) = q2(t) and
q1(t + 2τ) = q2(t + 2τ). Obviously the spacêC2(T,R) is one-dimensional and
consists of the real multiples ofσ ∈ Ĉ2(T,R) defined by

σ(t +h) :=
3

4τ3h(2τ−h) for all h∈ [0,2τ] (32)
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and eachδq∈ Ĉ2(T,Rn) can be written as

δq = eσ , e∈ Rn , (33)

where the vectore is uniquely determined. Hereσ is chosen to have the dimension

of a frequency, actually
2τ∫
0

dhσ(t + h) = 1, and the components ofe may differ

in dimension if the components ofX do so. Throughout the rest of the paper
quantitiesδq,e,σ will be understood as satisfying (33). Unlike the general situation
in the calculus of variations, the path variations form a space of finite dimensionn;
therefore stationarity entails algebraic equations instead of differential equations.

We are now in a position to exploit (1) within the parabolic path framework. There-
fore, we compute the quantities (2),(3), and (4). The result will be reached with
equations (52) and (53).

In (2) we have to compute a directional derivative (variation). The influence of this
variation on the parameters(x,v,a) and(x1,x2,x3) of a path follows from

σ̇(t) =
3

2τ2 , σ̈(t) =
−3
2τ3 , σ(t + τ) =

3
4τ

(34)

to be

q+λδq = q+eλσ = Π1
−1(t,x,v+eλ

3
2τ2 ,a+eλ

−3
2τ3 ,τ)

= Π2
−1(t,x1,x2 +eλ

3
4τ

,x3,τ) .

(35)

For eachΦ ∈C(C2(T,X),R) we thus have

(δΦ)(q) : =
d
dλ

Φ(q+λδq)
∣∣∣
λ=0

= e· [Dτ(Φ◦ Π1
−1)](t,x,v,a,τ) ,

= e· [∂τ(Φ◦ Π2
−1)](t,x1,x2,x3,τ)

(36)

for the following first order,n-component, differential operators8:

Dτ : C(YT ,R) → C(YT ,R) , Dτ :=
3

2τ3(τ∇v−∇a) , (37)

∂τ : C(ZT ,R) → C(ZT ,R) , ∂τ :=
3
4τ

∂
∂x2

. (38)

Defining theaction integral SL ∈C(YT ,R) by

2τ∫
0

dhL(t +h,q) =
2τ∫

0

dh L(t +h,x+vh+a
h2

2
,v+ah)

=: SL(t,x,v,a,τ)

(39)

8each component ofDτ and∂τ has source and target as indicated
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we get from (36) for the quantity defined in equation (2)

E(L,q,δq) = e· (DτSL)(t,x,v,a,τ) . (40)

Notice that this does not make use of the integration by parts representation (6).

Equations (3) and (4) imply

2τ∫
0

dhδq(t +h)F(t +h,q) =
2τ∫

0

dheσ(t +h)F(t +h,x+vh+a
h2

2
,v+ah)

=: e·WF(t,x,v,a,τ) ,

(41)

2τ∫
0

dhδq(t +h)G(t +h,q) =
2τ∫

0

dh eσ(t +h)G(t +h,x+vh+a
h2

2
,v+ah,a)

=: e·WG(t,x,v,a,τ)
(42)

which definesWF ∈C(YT ,Rn) andWG ∈C(YT ,Rn).

The basic equation (1) expressing the action principle can now be expressed for
parabolic paths as

DτSL +WF +WG = 0 . (43)

Looking for autonomous trajectories we are facing an interesting situation: Since
all paths under consideration are parabolic, we should not assume that a strictly
autonomous path can be found among them. Each parabolic path will satisfy (43)
only with small guiding forces in action. This means that the integrand of the
integralWG will be small but will not vanish. However, setting the whole integral
equal to zero results in as many equations as the accelerationa has components so
that for given(t,x,v,τ) a valuea can be expected to exist such that

(DτSL)(t,x,v,a,τ)+WF(t,x,v,a,τ) = 0 . (44)

This is the first of three forms of small step equations of motion that the parabolic
path framework suggests. As will be shown soon (see equation (57)) it is closely
related to thediscrete Euler-Lagrange equationof discrete variational mechanics.
The pathΠ−1

1 (t,x,v,a,τ) ∈C2(T,X) can be considered the natural solution to the
initial value problem within spaceC2(T,X) since the quality measure of the ap-
proximation (a weighted integral over the guiding force) is taken directly from the
physics of the problem and not, for instance, from the geometry of the path which
may be badly represented by our generalized coordinates anyway. I’ll refer to (44)
as theEuler-Lagrange equation for parabolic paths.

Let us try to let the forces enter as a contribution to the action integral i.e. transform
WF into DτSF for a suitable action integralSF . This is not possible in a consistent
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manner for the general case of long paths as lucidly explained in [11],§33, equation
11. A superficial argument in favor of the opposite opinion is given in [4]. For short
paths, we have a particular situation that was already exploited in [8]. There the
contribution of the forces to the action was defined relative to an autonomous path
and fortunately this reference path canceled out in the integrator formula. Here is
an improved formulation which uses an explicitly given reference path, namely the
linear path

q0 := Π−1
1 (t,x,v+aτ,0,τ) (45)

which satisfiesq(t) = q0(t) andq(t +2τ) = q0(t +2τ). This path allows us to form
a plausible action integral of forces

SF(t,x,v,a,τ) :=
2τ∫

0

dh[q(t +h)−q0(t +h)] ·F(t +h,q)

=
2τ∫

0

dh
h
2
(h−2τ) a·F(t +h,x+vh+a

h2

2
,v+ah) .

(46)

We have

e· (DτSF)(t,x,v,a,τ)

= δ
2τ∫

0

dh[q(t +h)−q0(t +h)] ·F(t +h,q)

=
2τ∫

0

dhδq(t +h) ·F(t +h,q) +
2τ∫

0

dh[q(t +h)−q0(t +h)] · (δF)(t +h,q)

= e·WF(t,x,v,a,τ)+
2τ∫

0

dh
h
2
(h−2τ)

d
dλ

a·F(t +h,q+λδq)
∣∣∣
λ=0

= e·WF(t,x,v,a,τ)+O(τ2) .

(47)

That the last integral, let us call itI , is indeedO(τ2) can be seen as follows:

I =
2τ∫

0

dh
h
2
(h−2τ)

d
dλ

a·F(t +h,x+vh+a
h2

2

+λe
3

4τ3h(2τ−h),v+ah+λ
3

2τ3e(τ−h))
∣∣∣
λ=0

=
3

2τ3

2τ∫
0

dh
1
4
[h(h−2τ)]2 f1(t +h,x+vh+a

h2

2
,v+ah,a)

+
3

2τ3

2τ∫
0

dh
h
2
(h−2τ)(h− τ) f2(t +h,x+vh+a

h2

2
,v+ah,a) ,

(48)
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where f1 := (e·∇x)(a·F), f2 := (e·∇v)(a·F). The f1-integral is obviouslyO(τ2)
and for thef2-integral, integration by parts gives

− 3
2τ3

2τ∫
0

dh
1
8
[h(h−2τ)]2

d
dh

f2(t +h,x+vh+a
h2

2
,v+ah,a) (49)

which isO(τ2) too. We thus have

DτSF = WF +O(τ2) . (50)

Returning to equation (42) we get by Simpson’s rule

WG(t,x,v,a,τ) =
2τ∫

0

dh
3

4τ3h(2τ−h)G(t +h,x+vh+a
h2

2
,v+ah,a)

= G(t + τ,x+vτ+a
τ2

2
,v+aτ,a)+O(τ2) .

(51)

Inserting results (50), and (51) into (43) we finally get

(DτS)(t,x,v,a,τ) =−G(t + τ,x+vτ+a
τ2

2
,v+aτ,a)+O(τ2) , (52)

where
S:= SL +SF (53)

which I will refer to as thesmall step action principle. TheO(τ2)-residual will be
discussed in Section 5. There are three ways of reading this principle:

1. Looking atG as a physical quantity (the guiding force) the principle shows
how this force is determined by the system path by settingG equal to some
explicit expression depending on this path.

2. Looking atG as an expression depending on a path we see the principle
determining the path for whichG has a certain value.

3. Looking at both sides as explicit expressions made of the quantitiesL,F,q we
see the principle stating a mathematical fact. For the author the most surpris-
ing side of this fact was its generality. For a long time some misconception
led me to believe that it would hold only for Lagrangians of the special form
L(t,x,v) = T(v)−V(t,x) and forced me to look for modifications of growing
complexity to cover the case of velocity dependent forces.

For determining autonomous paths the right hand side can be set to zero yielding

(DτS)(t,x,v,a,τ) = 0 . (54)
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This equation determinesa, and hence the pathq = Π−1
1 (t,x,v,a,τ) if t,x,v,τ are

given. This is our second form of a small step equations of motion.

Let us repeat the three-point re-formulation of (54) for reference since in Section 3
it was not stated for non-conservative forces: Thethree-point versionS̃ of S is
defined by

S̃(t,x1,x2,x3,τ) := S(t,x,v,a,τ) , (55)

wherex,v, anda are given by (27). Equations (37), (38) imply

3
4τ

∂S̃
∂x2

(t,x1,x2,x3,τ) = (DτS)(t,x,v,a,τ) (56)

so that (54) is equivalent to

∂S̃
∂x2

(t,x1,x2,x3,τ) = 0 (57)

and

x1 = x ,
3
2

x2−x1

τ
− 1

2
x3−x2

τ
= v

expresses the initial conditionq(t) = x, q̇(t) = v . The two equivalent formulations
(54) and (57) of the initial value problem for parabolic paths will be referred to as
themidpoint variation method.

More on the contribution of forces to the action integral

For use in this subsection we rename the time variable fromt +h to
t. Let us look into this combined contribution of Lagrangian and forces
to a single action integral for paths that are not necessarily parabolic.
In the light of the action principle the raison d’être of the Lagrangian
is to associate a value of the action with each finite piece of a sys-
tem path. If the Lagrangian would in addition to its usual arguments
(t,x,v) depend also on the initial timeti and the final timet f of the
path, this would not changeL’s ability to define a function on path
segments. The same would be true if it would depend in addition on
the acceleration. Within such a framework we define anextended La-
grangian

K(ti , t, t f ,x,v,a) := L(t,x,v)+
(t− ti)(t− t f )

2
a·F(t,x,v) (58)

which allows us extend the definition of the action integral (53) to an
arbitrary path as follows

S(ti , t f ,q) :=

t f∫
ti

dtK(ti , t, t f ,q(t), q̇(t), q̈(t)) . (59)
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To analyze the behavior of the expression we divide the time interval
[ti , t f ] into subintervals. To each subinterval the definition ofS ap-
plies, and we have a well defined action integral over each subinterval.
Without the contribution of theF-term toK the action integral would
be additive with respect to such a partition. The relative contribution of
theF-term and theL-term to the value of the action integralSdepends
strongly ont f − ti . But the contribution to variations of its value is bal-
anced such that it makes no difference whether we treat a potential as a
contribution toSL or its gradient as a contribution toSF . With growing
values oft f − ti the combination ofL andF into one expression (58)
becomes increasingly meaningless. We thus have the remarkable sit-
uation that for small-step evolution (the realm of integrators) a forced
mechanical system shows aunity of behaviorof forces and potentials
that gets lost for larger time steps.

Equation (57) is closely related to thediscrete Euler-Lagrange equationof
[7],(1.3.3),p. 372. Setting there

Sd(q1,q2,q3) := Ld(q1,q2)+Ld(q2,q3)

this equation can be written as

D2Sd(q1,q2,q3) = 0 ,

which has the same meaning as (57). Equation [7],(1.3.3) is stated for purely La-
grangian systems. The corresponding equation [7],(3.2.2) for forced systems is
more complex. Whilst discrete mechanics as developed in [7] has a two-point ac-
tion function (discrete Lagrangian) as the basic input and considers discrete trajec-
tories, the method of [8] is based on the three-point function. This structure is rich
enough to allow a formulation of the dynamical law as a one-stage, one-step inte-
grator. The composition of many steps into a discrete trajectory is then a pragmatic
procedure which is not needed for the formulation and solution of the equation of
motion. In [8] the three-point function is not introduced as an integral of a contin-
uously defined function along a parabolic path, but by direct discretization just as
the discrete Lagrangians are obtained in [7].

In summary, the three- point method enjoys the following remarkable properties:

1. Forces for which there is no potential can be taken into account as a contri-
bution to the three-point function (see (46), (53), (55)).

2. The equation of motion can be written in terms of the three-point function
(see (57)).
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5 Analysis of the small step action principle in terms of
series expansions

In this section we verify and extend (52) by a different method which is very pow-
erful for this purpose but is not suitable for discovering such equations. The deriva-
tion of (52) could lead one to expect thatg = 1

2 would be a distinguished value in
(60). Thus the last part of the theorem is so far interesting as it falsifies this expec-
tation. We will encounter the factor35 again in equation (90).

Theorem Let t,τ, L, F, G, S, Dτ be as defined so far. Then

(DτS)(t,x,v,a,τ) =−G(t + τ,x+vτ+aτ2g,v+aτ,a)+O(τ2) (60)

for all (x,v,a) ∈ X ×Rn×Rn and all g∈ R. If L and F are those of a
harmonic oscillator, the O(τ2)-term reduces to O(τ3) iff g = 3

5.

Proof: Verification of this statement is straightforward in principle since both sides
can be expanded in powers ofτ by Taylor’s formula. The number of terms arising
that way is very large so that is hard to avoid omissions. So, what is done here is
to transform the relevant terms to a form that then can be treated by a computer
program capable of executing replacement rules. The program together with its
output is reproduced in the appendix.

In order to deal only with scalar expressions, we contract the free indices by an
arbitrarye∈ Rn and introduce as abbreviations:

LHS := e·(DτS)(t,x,v,a,τ)

RHS :=−e·G (t + τ,x+vτ+aτ2g,v+aτ,a) .

What we have to show is

DIFF := LHS−RHS= O(τ2) . (61)

We transform LHS and RHS into sums of products of differential operators which
finally act on the functionsL andF . We will need the argument transformations

[H(h,z) f ](t,x,v,a) := f (t +h,x+vh+ah2z,v+ah,a) (62)

for z= g andz= 1
2. Due to the particular argument structure these can be easily

expressed as sums of products of differential operators. This will be carried out for
a slightly more general expression, which makes the point clearer:

[T(∆t,∆x,∆v) f ](t,x,v,a) :=
f (t +∆t(x,v,a),x+∆x(v,a),v+∆v(a),a) .

(63)
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We easily see from Taylor’s formula

T(∆t,∆x,∆v) = e∆t ∂t e∆x·∇x e∆v·∇v

=up to substitution

∞

∑
j=0

1
j!

(∆t∂t +∆x·∇x +∆v·∇v)
j ,

(64)

where the substitution is as follows: any product of two terms from the list(∂t , ∆x·
∇x, ∆v·∇v) in which the order of factors does not match the order in the list has to
be replaced by the corresponding product in reversed order. By definition ofH we
have

RHS=−[H(τ,g)e·G ](t,x,v,a) (65)

which established the desired form for this term.

In order to transform LHS we define

K(t,x,v,a,h,τ) := L(t,x,v)+ a·F (t,x,v)
h
2
(h−2τ) (66)

and get

S(t,x,v,a,τ) =
2τ∫

0

[H(h, 1
2)K](t,x,v,a,h,τ)dh

= [H(h, 1
2)K](t,x,v,a,h,τ)

collect powers ofh, hk→ (2τ)k+1

k+1

.

(67)

LHS is obtained fromSby multiplication with the differential operatore·Dτ from
(37):

LHS =
3

2τ3 [(τ e·∇v − e·∇a )S](t,x,v,a,τ) . (68)

This establishes the desired form also for this term. In order to simplify the terms
RHS and LHS and to render them comparable one has to bring the differential
operators into a fixed order. This works in our case since the commutation rela-
tions between all differential operators appearing in these expressions can easily be
worked out to result in a closed Lie algebra. Then, the products of differential op-
erators can be expanded according to a Birkhoff-Witt basis by repeated application
of the commutation relations. This defines a normal form for each sum of products
of differential operators.

Although achieving this normal form involves thousands of substitutions it is easily
formulated and very efficiently carried out by a computer algebra program such as
FORMby J.Vermaseren. Fully commentedFORMcode and computed expressions
for S, LHS and DIFF are reproduced in the appendix. Particularly, the Lie alge-
bra mentioned above is given explicitly there under the heading COMMUTATION
RELATIONS (iii).
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Finally we look for circumstances that let the second order terms in DIFF vanish.
Let us make first an assumption that is a bit more general than having an harmonic
oscillator:L = T(v)−V(x) andF = 0. Then the following terms remain in DIFF:

1
10

v·∇x
2 e·∇x L− 1

10
a·∇v

3 e·∇v L

3
5

a·∇x e·∇x L−g a·∇x e·∇x L .

The first line vanishes if kinetic energy and potential energy are quadratic forms
and the last line vanishes just forg = 3

5. QED

TheFORMprogram creates the following explicit expressions forSandDτS: 9

S(t,x,v,a,τ)
=

[
2τ L+2τ2(∂t + v·∇x + a·∇v )L

+
2
3

τ3 (−a·F +2∂t
2 L+4∂t v·∇x L+4∂t a·∇v L+2v·∇x

2 L

+4v·∇x a·∇v L+2a·∇x L+2a·∇v
2 L)

+
2
3

τ4 (−∂t a·F + ∂t
3 L+3∂t

2 v·∇x L+3∂t
2 a·∇v L

+3∂t v·∇x
2 L+6∂t v·∇x a·∇v L+3∂t a·∇x L+3∂t a·∇v

2

−v·∇x a·F + v·∇x
3 L+3v·∇x

2 a·∇v L+3v·∇x a·∇x L

+3v·∇x a·∇v
2 L+3a·∇x a·∇v L− a·∇v a·F + a·∇v

3 L)
]
(t,x,v)

+O(τ5) . (69)

(DτS)(t,x,v,a,τ)
=

[
F − ∂t ∇v L− v·∇x ∇v L+ ∇x L− a·∇v ∇v L

+τ (∂t F − ∂t
2 ∇v L−2∂t v·∇x ∇v L+ ∂t ∇x L−2∂t a·∇v ∇v L

+v·∇x F − v·∇x
2 ∇v L+ v·∇x ∇x L−2v·∇x a·∇v ∇v L− a·∇x ∇v L

+∇x a·∇v L+ a·∇v F − a·∇v
2 ∇v L)

]
(t,x,v)

+O(τ2) . (70)

A simple consequence of (60) is

(DτS)(t,x,v,a,τ) =−G(t,x,v,a)+O(τ) . (71)

This can also be seen directly by comparing (70) and (11). Thus the general La-
grange equations of mechanics, given byG = 0 follow from the small step action
principle (54).

9 Conversion fromFORM output into conventional notation has been done manually, although
automation would be desirable. The printed part of the program output gives also the next order
terms that are not needed for the presentO(τ2)-form of the theorem. The terms of much higher order
can be created by increasing the numberp in the first program line.
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Aiming at solving equation (54) fora, one could replaceDτSby the approximation
provided by (70) and findaby an iterative scheme. This is, however, neither elegant
nor efficient. Here, the theorem shows its value: The ‘O(τ2)-equivalent’ equation

G(t + τ,x+vτ+aτ2g,v+aτ,a) = 0 (72)

can much more easily be solved fora as will be shown in Section 6. This is our
third and last form of a small step equation of motion. An additiveO(τ2)-term to
either side of equation (72) would cause anO(τ3)-contribution to the single step
state change and anO(τ2)-contribution to the state change over a fixed spanT of
time. So it would not change the order of a second-order integration method as the
one to be defined in the next section.

Notice that Euler’s rule just uses equationG(t,x,v,a) = 0 instead of (72).Euler’s
rule is the only rational recipe if no information is available on the time span over
which a will be used to predict the trajectory. If this time span2τ is known, we
can do much better by using (72), particularly with the simplifying choice g= 0.
Section 6 puts this into an algorithm. Section 7 will give an example where (72)
works better than (54).

6 Time Stepping Algorithm (Integrator)

Given(t,x,v) as initial state and a valuea for the acceleration, the final final state
is

t := t +2τ
v := v+a(2τ)

x := x+v(2τ)+a
(2τ)2

2

(73)

or, nicely re-usingv,

t := t +2τ
v := v+a(2τ)
x := x+(v+v)τ .

(74)

or, using suitable intermediate quantities ,

t ′ := t + τ
v′ := v+aτ
x′ := x+vτ
t := t ′+ τ
v := v′+aτ
x := x′+vτ .

(75)
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So, the remaining task of the time stepping algorithm is to determine the accelera-
tion a. As explained in Section 5, the natural thing to do is to solve (72) fora. By
definition (15) ofA, we have

G(t,x,v,A(t,x,v)) = 0

for all values of the arguments. In particular

G(t + τ,x+vτ+aτ2g,v+aτ,A(t + τ,x+vτ+aτ2g,v+aτ)) = 0 ,

so that (72) implies

a = A(t + τ,x+vτ+aτ2g,v+aτ) . (76)

For g = 0 we have the following particularities:

1. Equation (76) can be written as

a = A(t ′,x′,v′) . (77)

2. If A depends onv trivially, we geta simply as

a = A(t + τ,x+vτ,v) . (78)

3. If A depends linearly onv : A(t,x,v) = A0(t,x)+A1(t,x)v, we get

a = (1− τA1(t + τ,x+vτ))−1A(t + τ,x+vτ,v) , (79)

where the inversion means matrix inversion (see commentary to equation
(15)) forn> 1. Else, the equation is implicit in a harmless manner and can be
solved by one or two steps of the following remarkable oscillation damping
iteration scheme, which also works well for the general case 0≤ g≤ 1 to
which we now return:

a0 := A(t + τ,x+vτ,v)

a∗ := A(t + τ,x+vτ+anτ2g,v+anτ)

a∗∗ := A(t + τ,x+vτ+a∗τ2g,v+a∗τ)

an+1 :=
1
2
(a∗+a∗∗) .

(80)

This iteration solution may be even more economic than (79). In the example
of Section 7 the simple iteration scheme (i.e.an+1 := a∗) is nearly as accurate
as the full version. In more complicated situations, it is hard to find reasons for
doing without the extra stability provided by (80). Doing the iteration zero times
(i.e. a := a0) also defines an integrator which, however, is only of first order ifA
depends non-trivially onv. This method is used in [9] for computational efficiency.
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It is first order only during collisions and second order else. In the example of the
next section this simplified method is more accurate than the Runge-Kutta second
order method.

The intermediate quantity(t ′,x′,v′) from (75) is not considered a point on a discrete
trajectory. It is simply an auxiliary quantity which can be economically computed
from the initial conditions and which is designed to yield a good proposal for the
overall acceleration during the time span 2τ. In the context of numerical methods
for the initial value problem of ordinary differential equations it is said to be an
intermediate stageof a one-step method. From a geometric point of view it is
a very natural one. Note that the computed parabolic trajectory lies in a plane
determined by the pointx and by the vectorsv, a. When parameterizing this curve
by (time− t)/2τ it is just theBézier curvegenerated from thecontrol points x, x′,
andx (e.g. [2]).

Let us see how the algorithm fits into the spectrum of ODE-methods. The defini-
tions

p :=(t,x,v) , p′ := (t ′,x′,v′) , p := (t,x,v) ,

f (p) := f (t,x,v) := (1,v,A(t,x,v))
(81)

make equation (16) an autonomous, first-order ODE

ṗ = f (p) . (82)

Equations (75),(81) imply
p = p+2τ f (p′) (83)

which is known under the namesexplicit midpoint ruleor Leap-Frog method(see
[12], p. 224, (3.3.11)) when considered as definition of a two-step method (i.e.
assumingp and p′ from previous computation, we find the next statep by (83)).
This is, however, not our present situation. Instead we need a further equation that
allows eliminatingp′ so that we can computep from p alone. This equation is in
the caseg = 0 given by

t ′ = 1
2(t + t) , v′ = 1

2(v+v) . (84)

This is a special condition that cannot be expressed in terms ofp and f , rather it
makes use of the special situation that we have an ODE of second order. The most
closely related equation that can be formulated in the general theory is

p′ = p+ τ f (p′) (85)

which, together with (83), defines theimplicit midpoint rule. This rule is implicit
also for the case that equation (78) is valid. It is just what we get forg = 1. The
g= 0 method is not new to the ODE-literature, see [8] for some identifications, but
it has, as it appears, not yet been recognized as a particularly natural and efficient
method. Actually, all such identifications deal with the case (78), so that the general
case has an even more uncertain literature status. I’ll refer to theg = 0 method as
thedirect midpoint method.
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Informal remark on quantum and field dynamics

It is interesting to observe that (78) can easily be applied to quantum dynamics
and to hyperbolic partial differential equations. Let us spell out here the quantum
version for a time-dependent HamiltonianHt :

a : =− 1
~2 H2

t+τ(ψt + τψ̇t)

ψt+2τ := ψt +2τψ̇t +2τ2a

ψ̇t+2τ := ψ̇t +2τa ,

(86)

where the initialization of the velocities is done byψ̇0 := 1
i~ H0ψ0. With (86) it is

straightforward to set up a one-dimensional computer model of a single quantum
particle under the influence of arbitrary potentials. In all the many experiments done
in this way, I found no exception to the following remarkable property: the norm and
the energy expectation value (since the potentials did not depend on time) of the wave
function deviate from strict constancy during phases of very violent motion (where
the spatial and temporal variations are clearly too large for the discretization length
and time of the model) but come back to the original values with nearly the accuracy
of the computer’s number representation in all phases of calmer motion. No trend
for changing the norm or the energy in the long run was observed. Notice that this
is more than unitarity and energy conservation. A method enjoying the property of
unitarity would conserve the disturbed value of the norm and would not restore it.

I experienced comparable stability properties whenever I applied the method
characterized by equations (74) and (78) to physical systems, ranging from point
particles, to rigid bodies, waves, and quantum particles. So, there seems to existsthe
method to start with, when the dynamics of physical systems is to be modeled on a
computer. The implementation is nearly as simple as that of the Euler rule and when-
ever the discretization is chosen with a minimum of insight one will see the system
evolve without the explosive auto-acceleration effects that the Euler rule shows after
a few integration steps. The simplicity of the algorithm guarantees fast execution.
Only if high accuracy it to be achieved with a small number of steps and in systems
of sufficiently smooth forces, more specialized methods may offer substantial advan-
tages.

I imagine that Leonhard Euler would have switched soon to that symmetrical
mode of updating the acceleration in the center of the time step if he would have been
interested in computing a finite piece of a trajectory. For building the trajectory in the
mode of a thought experiment, the symmetrical update offers no advantage since the
number of acceptable time steps is then unlimited.

7 Application to the Damped Harmonic Oscillator

For conservative systems the direct midpoint method was studied in some detail
in [8]. So, let us consider here a non-conservative system, where bothL andF
are at work. The present choice is the one-dimensional damped harmonic oscilla-
tor since it allows all methods under consideration being carried out explicitly and
being compared with the exact solution. With a strong influence of friction is not
completely trivial as a computational problem. It is not intended to make serious
comparison with other numerical methods. As we will see, even with this restric-
tion one can observe a lot of interesting properties that invite further investigation.
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Lagrangian and (additional) force of the damped harmonic oscillator can be written
as

L(t,x,v) =
m
2

v2− k
2

x2 , F(t,x,v) =−bv , (87)

from which we get (see (11),(15))

G(t,x,v,a) = ma+bv+kx , A(t,x,v) =− 1
m

(kx+bv) . (88)

This is an example of the complicating situation that (78) is not satisfied. However,
it is not the worst case, since obviouslyA depends linearly onv, so that (79) directly
gives

a =−bv+k(x+vτ)
m+ τb

. (89)

In this case one easily calculates the action integrals (39), (46), and the force term
(41) exactly. One finds that the Euler-Lagrange equation for parabolic path (44)
and the equation of the midpoint variation method (54) can be solved exactly and
have the same solution, namely

a =− bv+k(x+vτ)
m+ τ(b+ 3

5kτ)
. (90)

Explicit expressions for the exact trajectory result from the solution of the elemen-
tary initial value problem for linear differential equation

mẍ+bẋ+kx= 0 . (91)

For a considerably damped oscillator (b > 0) the amplitude quickly decays to zero
and it could look difficult to quantify the differences between methods. There is,
however, a method of quantifying the error of dynamical approximation methods
which is independent of the order of magnitude of the dynamical variables. This
method is a re-interpretation of what is known in quantum mechanics as thein-
teraction pictureand as the method of intermediary orbits in celestial mechanics.
Characterizing the dynamics by its time evolution mapΦ we compare a states(0)
at timet = 0 with the state

sint(t) := Φexact(−t)(Φapproximate(t)s(0)) (92)

in the course of timet. The exact method for evolving the state back tot = 0
is in our case given by a simple explicit formula. For testing numerical methods
for which the exact back-evolution method is not given by explicit expressions it
can always be simulated by numerical methods that get more computing resources
allocated than the method under evaluation. If one likes to stay within the usual
context of the interaction picture one has to consider the approximate dynamics as
resulting from the exact one by an interaction process. (See e.g. [12], p. 502.)
The dynamics caused by this interaction process alone is the one given by the
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Figure 2: relative amplitude error over 20 oscillations

interaction picture. The full power of the method becomes apparent if one shows
not only the trajectory of a single state as is done here with Figures 2 and 3, but if
one looks at a cloud of states simultaneously in a computed animation (analogous
to [10], Figure 6.1).

Let us look at the present numerical example. We consider the somewhat artificial
situationb < 0, in which there is no friction but a driving force which increases
with speed. Then the amplitude of the exact solution grows exponentially. We
consider a rather large value of|b| that doubles the amplitude every two oscillation
periods. The number of steps per oscillation period is chosen as 32 (as in the
oscillator example in [8]). Letρ andω be the real constants for which the general
exact solution of (91) ist 7→ e−ρtcos(ωt +ϕ). Then a convenient descriptor for the
states(t) = (x(t),v(t)) is the complex amplitudes(t)c := x(t)− i[v(t)+ ρx(t)]/ω
of absolute values(t)r := |s(t)c| and phases(t)ϕ := arg(s(t)c). What we represent
graphically are the quantities

[sint(t)r−s(0)r]/s(0)r and sint(t)ϕ−s(0)ϕ

which would be constantly zero for an exact integration method and that are there-
fore calledrelative amplitude errorandphase error. The two figures show these
quantities for 20 oscillation periods during which the amplitude grows by a factor
of 1024 . In Figure 2 the direct midpoint method stands out in giving a very low
amplitude error without any visible trend. Larger values of|b| show that this is not
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a law. In all cases that I tested, the direct midpoint method was by far the method
with the least relative amplitude error. However, in Figure 3, the direct midpoint
method shows the largest deviation of the frequency (a linear trend of the phase
translates into a shift of the frequency; looking at discretization as a perturbation
of the continuous motion we should not be surprised to find renormalization of
the parameters of the original equation). That justg = 0.68 makes the phase error
nearly vanish is not a magic property of just this number. For different values ofb,
different values forg are needed to achieve the same effect, whereas the property
of g = 0 to minimize the amplitude error seems to occur uniformly for all values
of b.

In the application field of granular media there is a decisive difference in the rele-
vance of the phase error and the amplitude error. If two irregularly shaped particles
undergo an inelastic collision one has to cover the phase of overlap typically only
by a few time steps of the integrator. Amplitude errors translate into errors in the
resulting energy dissipation (even the sign of it may come out wrongly) whereas
phase errors translate into deviations from the correct duration of the process which
in a soft particle idealization is deliberately accepted.

Given that the midpoint variation method is a direct translation of the fundamental
action principle into the parabolic path framework, I would not have been surprised
if this method would have turned out to give overall the most realistic trajectories.
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Instead, it gives the second worst phase error and the worst amplitude error among
the methods under consideration. This renders the expected overall superiority
of the method improbable. It should be noted, however, that the Runge Kutta
method of second order shows errors approximately 10 times larger so that also the
midpoint variation method belongs still to the ‘methods that work better than ex-
pected’. Actually it is advantageous that the computationally much simpler direct
midpoint method works better, but an understanding for this situation seems still to
be missing.
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8 Appendix

FORM by J.Vermaseren,version 3.0(Jan 28 2001) Run at: Tue Nov 12 21:33:15 2002
************************************************************
* Ulrich Mutze 2002-11-12
* Symbolic computation using the program FORM (by J.A.M. Vermaseren)
* for proving the theorem in
* ’A Simple Variational Integrator for General
* Holonomic Mechanical Systems’
* Makes no use of Form’s vector indexing.
* Thus the number n of generalized coordinates needs not to be specified.
* Notice that all lines starting with ’*’ are ignored by FORM
************************************************************
#define p "4"
* Highest order to which the series of the exponential function
* will be computed.
* We get all contributions to S of order p+1 (in tau),
* all contributions to LHS of order (p+1)-3,
* and all contributions to RHS of order p.
* Since we need all linear terms in LHS-RHS, we need p>=3.
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* Even for p=6 the program needs only few seconds to do the work.

Symbols tau,g,h,j,h;

Functions L,aF,eF;
* Lagrangean and Force, aF:=a.F
* In FORM ’Function’ declares simply symbols for which the commutative
* law of multiplication is not assumed. This has nothing to do with
* function arguments and evaluation.
* Although not all of these non-commutative quantities are needed from
* the beginning, we list them all here since output formatting depends
* on the order of introduction.

Functions Dt, vDx, aDx, eDx, aDv, eDv, eDa;
* List of differential operators. The order in the list as written here
* is derived from the order t,x,v,a,e of name components.
* When it comes to ordering products, always this order (i) is
* the one to be used.
* The following interpretation of these symbols is understood
* when comparing present FORM-expressions with those of the main text.
* pDq:= scalar product of a vector p with nabla with respect to a
* function argument p or in LATEX-notation:
* qDp := p_i \cdot \nabla_{q_i} (ii)

Off statistics;

*** Argument shift operators Htau and Hh defined by Taylor’s formula ****
* See (62),(63),(64)

Local taut=tau*Dt;
Local taux=tau*vDx+g*tau*tau*aDx;
Local tauv=tau*aDv;
Local Htau=1+sum_( j,1,‘p’,invfac_(j)*(taut+taux+tauv)ˆj);
* This is Taylor’s formula for arguments shift in the t,x,v-slot
* of a function !
* [Htau f](t,x,v,a) := f(t+tau, x+v*tau+a*tau*tau*g, v+a*tau, a)

* now the same with g-->1/2, tau --> h, I don’t know the way to do such
* substitutions on a language level. Here, the editor is sufficient
Local ht=h*Dt;
Local hx=h*vDx+(1/2)*h*h*aDx;
Local hv=h*aDv;
Local Hh=1+sum_( j,1,‘p’,invfac_(j)*(ht+hx+hv)ˆj);
* [Hh f](t,x,v,a) := f(t+h, x+v*h+a*h*h/2, v+a*h, a)

* For the following commutation relations see (64).
repeat;
id aDv*aDx=aDx*aDv;
id aDv*vDx=vDx*aDv;
id aDv*Dt=Dt*aDv;
id aDx*vDx=vDx*aDx;
id aDx*Dt=Dt*aDx;
id vDx*Dt=Dt*vDx;
endrepeat;
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.sort

* .sort finishes a module, so that we may enter into a new
* fixed order cycle of
* 1. Declarations: starting with keywords Symbol(s), Function(s), ...
* 2. Specifications: e.g. statistics Off ...
* 3. Definitions: starting with keywords Local, ...
* 4. Executable Statements: starting with keywords id ...
* 5. Output control: such as Print and Bracket

*** Definition of S ****

Symbols k,itag;

Local K=L+(h/2)*(h-2*tau)*aF;
* integrand of the action integral. See (66).

Local S=itag*Hh*K;
* presently S is the integrand of the action integral. Next statement
* transforms S into the evaluated integral.
* itag stands for integration tag

* so far we made definitions, now comes a computation
*(executable statement)

id itag*hˆk?=(2*tau)ˆ(k+1)/(k+1);
* doing the integration over h in expression S.
* See (53). The role of ’itag’ is simple:
* it delimits the range of the substitution to the h-terms in
* S instead of doing the replacement also in, say, Hh.

.sort

*** Definition of the expressions in Equation (60) ****

Local Ge=((Dt+vDx+aDv)*eDv-eDx)*L-eF;
* expression of equation (10) with indexes contracted by
* vector e. Introduction of e is the trick that allows to avoid
* vector indexing in the computation.

Local RHS=-Htau*Ge;
* this is the right-hand side of the equation of the theorem. See (65).

Local Dtau=(3/(2*tauˆ3))*(tau*eDv-eDa);
* Differential operator for the midpoint derivative in e-direction.
* See equation (37).

Local LHS=Dtau*S;

Local DIFF=LHS-RHS;
* Theorem 1 says that DIFF is second order in tau. Notice that terms
* of order 0 in tau are printed last, instead of first. The term DIFF
* should contain neither terms of order 0 nor of order 1 in tau.
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* Now we have to bring the non-commuting differential operators into
* a fixed order. This brings all expressions in a normal form so that
* one can see whether two expressions are equal, especially
* whether they are equal to 0.

repeat;
id eDa*aF=eF;
id eDa*L=0;
* destruction operator property. None of the functions on which the
* differential operators act, depends on a. In order to make use of this
* property, one has to move eDa to the utmost right position.

* COMMUTATION RELATIONS (iii)
* The following 6+5+4+3+2+1 commutation relations define
* a universal enveloping algebra. And repeatedly applying these
* relations to a sum of products (SOP) of Dt, vDx, aDx, eDx, aDv, eDv, eDa
* expands this SOP into a Birkhoff-Witt basis of this algebra.
* To be sure, the order of basis elements on which this Birkhoff-
* Witt basis relies is Dt, vDx, aDx, eDx, aDv, eDv, eDa (see (i)) .

* The following commutation relations follow from the interpretation
* of the pDq as differential operators (see (ii)).

* Writing < for the linear order in the list, e.g. aDx < eDa, the following
* long list of id-statements simply says:
* For all pDq, rDs such that pDq > rDs
* replace pDq*rDs by rDs*pDq+c,
* where c=pDs for q=r and c=0 else.

id eDa*eDv=eDv*eDa;
id eDa*aDv=aDv*eDa+eDv;
id eDa*eDx=eDx*eDa;
id eDa*aDx=aDx*eDa+eDx;
id eDa*vDx=vDx*eDa;
id eDa*Dt=Dt*eDa;

id eDv*aDv=aDv*eDv;
id eDv*eDx=eDx*eDv;
id eDv*aDx=aDx*eDv;
id eDv*vDx=vDx*eDv+eDx;
id eDv*Dt=Dt*eDv;

id aDv*eDx=eDx*aDv;
id aDv*aDx=aDx*aDv;
id aDv*vDx=vDx*aDv+aDx;
id aDv*Dt=Dt*aDv;

id eDx*aDx=aDx*eDx;
id eDx*vDx=vDx*eDx;
id eDx*Dt=Dt*eDx;

id aDx*vDx=vDx*aDx;
id aDx*Dt=Dt*aDx;
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id vDx*Dt=Dt*vDx;

endrepeat;
.sort

*** Programming Output ***

Bracket g;
Bracket tau;
* asks for expanding according to powers of tau, just what we want

Print S;
Print LHS;
Print DIFF;
.end;

************************** Results ***************************

S =
+ tau * ( 2*L )

+ tauˆ2 * ( 2*Dt*L + 2*vDx*L + 2*aDv*L )

+ tauˆ3 * ( - 2/3*aF + 4/3*Dt*Dt*L + 8/3*Dt*vDx*L + 8/3*Dt*aDv*L + 4/3
*vDx*vDx*L + 8/3*vDx*aDv*L + 4/3*aDx*L + 4/3*aDv*aDv*L )

+ tauˆ4 * ( - 2/3*Dt*aF + 2/3*Dt*Dt*Dt*L + 2*Dt*Dt*vDx*L + 2*Dt*Dt*aDv
*L + 2*Dt*vDx*vDx*L + 4*Dt*vDx*aDv*L + 2*Dt*aDx*L + 2*Dt*aDv*aDv*L -
2/3*vDx*aF + 2/3*vDx*vDx*vDx*L + 2*vDx*vDx*aDv*L + 2*vDx*aDx*L + 2*
vDx*aDv*aDv*L + 2*aDx*aDv*L - 2/3*aDv*aF + 2/3*aDv*aDv*aDv*L )

+ tauˆ5 * ( - 2/5*Dt*Dt*aF + 4/15*Dt*Dt*Dt*Dt*L + 16/15*Dt*Dt*Dt*vDx*L
+ 16/15*Dt*Dt*Dt*aDv*L + 8/5*Dt*Dt*vDx*vDx*L + 16/5*Dt*Dt*vDx*aDv*L
+ 8/5*Dt*Dt*aDx*L + 8/5*Dt*Dt*aDv*aDv*L - 4/5*Dt*vDx*aF + 16/15*Dt*

vDx*vDx*vDx*L + 16/5*Dt*vDx*vDx*aDv*L + 16/5*Dt*vDx*aDx*L + 16/5*Dt*
vDx*aDv*aDv*L + 16/5*Dt*aDx*aDv*L - 4/5*Dt*aDv*aF + 16/15*Dt*aDv*aDv*
aDv*L - 2/5*vDx*vDx*aF + 4/15*vDx*vDx*vDx*vDx*L + 16/15*vDx*vDx*vDx*
aDv*L + 8/5*vDx*vDx*aDx*L + 8/5*vDx*vDx*aDv*aDv*L + 16/5*vDx*aDx*aDv*
L - 4/5*vDx*aDv*aF + 16/15*vDx*aDv*aDv*aDv*L - 2/5*aDx*aF + 4/5*aDx*
aDx*L + 8/5*aDx*aDv*aDv*L - 2/5*aDv*aDv*aF + 4/15*aDv*aDv*aDv*aDv*L )

LHS =

+ eF - Dt*eDv*L - vDx*eDv*L + eDx*L - aDv*eDv*L
(term manually moved from the last position to the first one)

+ tau * ( Dt*eF - Dt*Dt*eDv*L - 2*Dt*vDx*eDv*L + Dt*eDx*L - 2*Dt*aDv*
eDv*L + vDx*eF - vDx*vDx*eDv*L + vDx*eDx*L - 2*vDx*aDv*eDv*L - aDx*
eDv*L + eDx*aDv*L + aDv*eF - aDv*aDv*eDv*L )

+ tauˆ2 * ( 3/5*Dt*Dt*eF - 3/5*Dt*Dt*Dt*eDv*L - 9/5*Dt*Dt*vDx*eDv*L + 3/
5*Dt*Dt*eDx*L - 9/5*Dt*Dt*aDv*eDv*L + 6/5*Dt*vDx*eF - 9/5*Dt*vDx*vDx*
eDv*L + 6/5*Dt*vDx*eDx*L - 18/5*Dt*vDx*aDv*eDv*L - 9/5*Dt*aDx*eDv*L

+ 6/5*Dt*eDx*aDv*L + 6/5*Dt*aDv*eF - 9/5*Dt*aDv*aDv*eDv*L + 1/5*Dt*
eDv*aF + 3/5*vDx*vDx*eF - 3/5*vDx*vDx*vDx*eDv*L + 3/5*vDx*vDx*eDx*L
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- 9/5*vDx*vDx*aDv*eDv*L - 9/5*vDx*aDx*eDv*L + 6/5*vDx*eDx*aDv*L + 6/
5*vDx*aDv*eF - 9/5*vDx*aDv*aDv*eDv*L + 1/5*vDx*eDv*aF + 3/5*aDx*eF +
3/5*aDx*eDx*L - 9/5*aDx*aDv*eDv*L - 2/5*eDx*aF + 3/5*eDx*aDv*aDv*L +
3/5*aDv*aDv*eF - 3/5*aDv*aDv*aDv*eDv*L + 1/5*aDv*eDv*aF )
+ higher order terms which were deleted manually in order to save space

DIFF =
+ tauˆ2 * ( 1/10*Dt*Dt*eF - 1/10*Dt*Dt*Dt*eDv*L - 3/10*Dt*Dt*vDx*eDv*L

+ 1/10*Dt*Dt*eDx*L - 3/10*Dt*Dt*aDv*eDv*L + 1/5*Dt*vDx*eF - 3/10*Dt*
vDx*vDx*eDv*L + 1/5*Dt*vDx*eDx*L - 3/5*Dt*vDx*aDv*eDv*L - 4/5*Dt*aDx*
eDv*L + Dt*aDx*eDv*L*g + 1/5*Dt*eDx*aDv*L + 1/5*Dt*aDv*eF - 3/10*Dt*
aDv*aDv*eDv*L + 1/5*Dt*eDv*aF + 1/10*vDx*vDx*eF - 1/10*vDx*vDx*vDx*
eDv*L + 1/10*vDx*vDx*eDx*L - 3/10*vDx*vDx*aDv*eDv*L - 4/5*vDx*aDx*eDv
*L + vDx*aDx*eDv*L*g + 1/5*vDx*eDx*aDv*L + 1/5*vDx*aDv*eF - 3/10*vDx*
aDv*aDv*eDv*L + 1/5*vDx*eDv*aF + 3/5*aDx*eF - aDx*eF*g + 3/5*aDx*eDx*
L - aDx*eDx*L*g - 4/5*aDx*aDv*eDv*L + aDx*aDv*eDv*L*g - 2/5*eDx*aF +
1/10*eDx*aDv*aDv*L + 1/10*aDv*aDv*eF - 1/10*aDv*aDv*aDv*eDv*L + 1/5*
aDv*eDv*aF )

+ higher order terms which were deleted manually in order to save space
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