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Abstract

We consider the classical 120-degree and related orbital models. These are the classical limits of quan-

tum models which describe the interactions among orbitals of transition-metal compounds both with and

without Jahn-Teller effects. We demonstrate that at low temperatures these models exhibit a long-range

order which arises via an ”order by disorder” mechanism. This strongly indicates that there is orbital order-

ing in the quantum version of these models, notwithstanding recent results on the absence of spin order in

these systems.
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The properties of transition-metal (TM) compounds are a topic of long-standing interest. Here,

the energy scales governing the transfer of charge and spin are well separated so all charges remain

localized and electronic properties are determined by effective interactions. The fractional filling

of the3d-shells in the TM ion provides an additional novel facet: The splitting of thet2g andeg

orbitals by crystal field can produce situations with a single dynamical electron (or a hole) on each

site along with multiple orbital degrees of freedom [1–3]. Pertinent examples are found among the

vanadates (e.g., V2O3 [4], LiVO 2 [5], LaVO3 [6]), cuprates (e.g., KCuF3 [2]) and derivatives of the

colossal magnetoresistive manganite LaMnO3 [7, 8]. The presence of the extra degrees of freedom

raises the theoretical possibility of global, cooperative effects; i.e., orbital ordering. Such ordering

has been observed via associated orbital-related magnetism and electric quadropolar moments (via

standard neutron and X-ray scattering), and by resonant X-ray scattering techniques wherein the3d

orbital order is detected by its effect on excited4p states [9–13]. The case for orbital ordering has

been further bolstered by detailed calculations [4, 5, 13, 14] and other considerations [15–17].

However, alternate perspectives [18] and various conceptual doubts [19, 20] have been raised

concerning the entire picture. In particular, at the theoretical level, the case for orbital ordering

has not yet been founded. In this paper, we present arguments which irrefutably demonstrate that

orbital ordering indeed occurs. We discuss primarily the 120◦-model which, e.g., corresponds to

occupation ofeg orbitals by a single valance electron.

In TM-compounds, the 120◦-model can be arrived at by either of two routes depending on

whether or not we account for the Jahn-Teller effects. Starting with an appropriate itinerant elec-

tron model andneglectingthe strain-field induced interactions among orbitals, a standard super-

exchange calculation leads to the KK model [2] with the Hamiltonian given by

H =

∑
〈r ,r ′〉

H r ,r ′

orb

(
sr · sr ′ +

1
4

)
. (1)

Here sr denotes the spin of the electron at siter and H r ,r ′

orb are operators acting on the orbital

degrees of freedom. For the TM-atoms arranged in a cubic lattice, these take the form

H r ,r ′

orb = J(4π̂α
r π̂α

r ′ − 2π̂α
r − 2π̂α

r ′ + 1), (2)

where theπ̂α
r denote orbital pseudospin operators acting on the appropriate orbital multiplet

andα = x, y, z is the direction of the bond〈r , r ′
〉. For the case at hand,π̂α

r =
1
4(−σz

r ±
√

3σx
r ) for

α = x andy andπ̂ z
r =

1
2σz

r .
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We have not yet studied the full version of this model; here we just discuss theorbital-only

approximation in which the spin degrees of freedom are suppressed. This approximation may be

presumed to capture the essential orbital physics of the systems at hand, as discussed in Refs. [8,

14, 21]. Notwithstanding, the model itself is of direct relevance. Indeed, when the effects of the

strain field cannot be neglected, there are Jahn-Teller orbital-orbital interactions mediated by this

field which resolve the orbital degeneracy. For the case ofeg-type compounds it is well known

(see [22]) that the effective interactions between the orbitals are exactly of the 120◦-type.

The situation in thet2g-compounds (e.g., LaTiO3) is somewhat more complicated. Neglecting

Jahn-Teller effects, an interaction as in Eqs. (1-2) emerges, but now the operators are given by

π̂α
r =

1
2σα

r for α = x, y, z, see [21]. This is called theorbital compassmodel; the associated

orbital-only approximation is derived analogously. When the strain fields are introduced, the up-

shot is another orbital-only term akin to those discussed so far. In thet2g cases our analysis is not

yet complete. Hence, in this paper, we will confine the bulk of our attention to the 120◦-model.

We remark that in all of these models, ordering among the spins is not necessarily a question

of pertinence. Indeed, in the itinerant-electron version of the orbital compass model, the elegant

Mermin-Wagner argument of Ref. [20] apparently precludes this possibility. However, the results

in Ref. [20] donot preclude the physically relevant possibility of orbital ordering which, as we

show in this paper, is realized at least in the classical versions of these systems.

Henceforth, we will deal only with the orbital pseudo-spins which we denote bySr instead of

π̂r . In the context of the orbital-only models, we consider the standardS → ∞ finite temperature

limit. As is well known [23, 24], this results in the classical analogues of the respective Hamilto-

nians, where the quantum variables are replaced by classical two or three-component spins. We

proceed with a concise definition.

Classical orbital-only models. We start with the 120◦-model which is the most prominent of

all of the above. The model is defined on the usual cubic lattice where at each siter there is a

unit-length two-component spin (associated with the two dimensionaleg subspace) denoted bySr .

Let â, b̂ andĉ denote three evenly-spaced vectors on the unit circle separated by 120 degrees. To

be specific let us havêa point at 0◦ with b̂ andĉ pointing at±120◦, respectively. We define the

projectionS(â)
r = Sr · â, and similarly forS(b̂)

r andS(ĉ)
r . Then the 120◦ orbital model Hamiltonian

is given by

H = −J
∑

r

(
S(â)

r S(â)
r+êx

+ S(b̂)
r S(b̂)

r+êy
+ S(ĉ)

r S(ĉ)
r+êz

)
, (3)
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where the classical nature of the interaction always allows us to setJ > 0.

The Hamiltonian of the orbital compass model has an identical form, i.e., we can still write

H = −J
∑
r ,α

S(α)
r S(α)

r+êα
, (4)

only nowSr are three-component spins and the superscripts represent the corresponding Cartesian

components. The seminal feature of both models is an infinite degeneracy of the ground state. In

particular, any constant spin-field,Sr = S, is a ground state in both cases. This is established by

noting that
∑

α[S(α)
r ]2 is constant in both problems. Thus, up to an irrelevant constant, the general

Hamiltonian of Eq. (4) is

H =
J
2

∑
r ,α

(
S(α)

r − S(α)
r+êα

)2
, (5)

which is obviously minimized whenSr is constant. We emphasize that the continuous symmetries

which underscore these ground states are just symmetries of the states andnot of the Hamiltonian

itself. Therefore, at least in the classical orbital-only models, we are not in a setting where a

Mermin-Wagner argument can be applied.

Matters are further complicated because, as it turns out, the constant spin fields arenot the

only ground states. Indeed, in the 120◦-model, starting from some constant-field ground state,

another ground state may be obtained, e.g., by reflecting all spins in thexy-plane through the

vector ĉ. This new state can be further mutated by introducing more flips of this type in other

planes parallel to thexy-plane. Obviously, similar alterations of the “pristine” states can take

place in the other two coordinate directions. What is not so obvious, but nevertheless true, is

that the abovementioned exhaust all the possible ground states for the 120◦-model: There is one

direction of stratification (layering); the corresponding projection ofSr is constant throughout

the system, leaving two possibilities for the other projections. In the various planes orthogonal

to the stratification directions either of these choices can be independently implemented. This

classification is proved by considering all possibilities of an elementary cube with a single spin

fixed, and ensuring consistency in the tiling of the lattice, see Fig. 1. The ground state situation

for the orbital compass model is far more complicated and it will not be discussed till the end of

this paper.

Let us now investigate the effects of finite temperature. Here, in general, we will see there is a

fluctuation driven stabilization—sometimes known as “order by disorder” [25]—that selects only

a few of the ground states. The arguments differ from the established standards, in part due to the
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FIG. 1: The four possible ground states for the 120◦ model on a cube with one spin fixed. The stratification

structure of any (global) ground state is demonstrated by checking for consistency between all neighboring

cubes.

complications caused by the stratified ground states. We will focus on the 120◦-model. Here we

can parameterize each spinSr by the angleθr with the x-axis. In this language, let us consider

the finite-temperature fluctuations about the “pristine” ground states where eachθr = θ?. At low

temperatures, nearby spins will tend to be aligned, so we can work with the variablesϑr = θr −θ?.

Neglecting terms of order higher than quadratic inϑr , the Hamiltonian (5) becomes

HSW =
J
2

∑
r ,α

qα(θ?)(ϑr − ϑr+êα
)2, (6)

whereα = x, y, z while qx(θ
?) = sin2(θ?), qy(θ

?) = sin2(θ?
+ 120◦) andqz(θ

?) = sin2(θ?
−

120◦).

Our preliminary goal is to compute the free energy as a function ofθ?. Let us assume that we

are on a finite torus of linear dimensionL. Interpretingθ? as theaverageof θr on the torus, we let

ZL(θ?) to denote the partition function

ZL(θ?) =

∫
δ
(∑

r

ϑr = 0
)

e−βHSW
∏

r

dϑr
√

2π
. (7)
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A standard Gaussian calculation then yields

− log ZL(θ?) =
1

2

∑
k 6=0

log
{∑

α

β Jqα(θ?) Eα(k)
}
, (8)

wherek = (kx, ky, kz) is a vector in the reciprocal lattice andEα(k) = 2−2 coskα. The right-hand

side divided byL3 produces in the limitL → ∞ the (dimensionless) spin-wave free energyF(θ?)

for deviations around directionθ?.

A tedious and rather unenlightening bit of analysis now shows that the spin-wave free en-

ergy F(θ?) hasstrict minima atθ?
= 0◦, 60◦, 120◦, 180◦, 240◦ and 300◦. As for the stratified

states, we have shown that the only states which need explicitly be considered are the period-2

states. To illustrate, consider the state which alternates betweenθ ≡ θ? andθ ≡ −θ? in the planes

perpendicular to thex direction. Here the limiting free energy is given by

F̃(θ?) =
1

4

∫
[−π,π ]3

dk
(2π)3

log det
(
β J5k(θ

?)
)
, (9)

where5k(θ
?) is the matrix

5k(θ
?) =

 q1E1 + q+E+ q−E−

q−E− q1E?
1 + q+E+

 . (10)

Here we have letqα = qα(θ?) andEα = Eα(k) be as above, and abbreviatedE?
α(k) = Eα(k +

π êα), q± = (q2 ± q3)/2 and E± = E2 ± E3. Some convexity analysis shows thatF̃(θ?) >

F(0◦) for θ?
6= 0◦, 180◦ (while, as is readily checked,̃F(0◦) equalsF(0◦)). Further arguments

can be enacted which demonstrate that, in general, the stratified ground states are suppressed,

exponentially, according to the total area of the “stratificational” defects. Thus, at the level of

spin-wave approximation, it is clear that finite-temperature effects will select six ground states

above all others. Of course, this is only the beginning of a complete mathematical analysis: One

must account for all other possible thermal disturbances and their interactions, the interactions of

said additional disturbances with the spin waves and, not to mention, the interaction of spin waves

with one another. Any such approach is, of course, hopeless even at the level of perturbation

theory. (The latter, as can be readily verified, is beset with infrared divergences even at the lowest

non-vanishing order.)

Our approach, which automatically circumvents these (and as yet other unnamed) issues, is

to block the lattice. We then tabulate—with controllable tolerance—whether or not each block

mimics the harmonic behavior of a favored ground state embellished with spin-wave excitations.
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The key is to show that with large probability such regions are indeed heavily favored and, of

equal importance, distinct regions of this type corresponding todifferent favored ground states

are separated by domain walls which exhibit a positive stiffness. We note, in accord with this

approach, that in the spin-wave approximations the ratios of the per site partition functions depend

only on θ? and not on temperature. Hence the domain-wall stiffness will not diverge asT → 0

implying the existence of ostensibly large scale events at low temperatures. For our purposes this

means that the desired suppression of the domain walls between the above ground states can be

extracted only after an appropriately large coarse graining of the system.

The argument begins by the consideration of two scales: a spin-deviation scale1 and the block

scaleB. The principal idea is that if every pair of spins satisfies|S(α)
r − S(α)

r+êα
| < 1, the Gaussian

approximation is “good” while if a neighboring pair violates this condition, the energetic cost is

ruinous. It is not hard to check that these requirements are met ifβ J12
� 1 while β J13

� 1;

thus, for largeβ, an acceptable choice would be1 = β−
5
12. We partition the circle into six ample

regions centered around the spin-wave free energy minima, i.e., atθ = 0◦, ±60◦, etc. These six

regions are separated by six intervals of size proportional toB1 (with B1 � 1) centered around

±30◦, ±90◦ and±150◦, which altogether partition the unit circle.

Next we consider our blocks of spins with block-scaleB. These will all be translates of a

single block3B of (B + 1)3 sites by vectorsBt wheret is a vector with integer components.

The size ofB will be determined momentarily; we reemphasize that althoughB has to be taken

somewhat large, its value will be independent of temperature. In order to determine a working

definition of adomain wall, we define a block to begood if all spins within the block satisfy the

aforementioned|S(α)
r − S(α)

r+êα
| < 1 and all have values in one and only one of the six regions

about the free energy minima. Those blocks which do not satisfy these criteria, thebad blocks,

constitute the elements of our domain walls. This nomenclature is justified by the observation that

since neighboring blocks share a face of sites in common, no neighboring pair of good blocks can

exhibit distinct types of goodness. The latter implies that connected components of good blocks

must be homogeneous in regards of their type and that regions of distinct type of goodness are

separated by closed “surfaces” (domain walls, contours, etc.) composed of bad blocks.

Keeping in mind that we must establish “good behavior” with high-probability, let us dissect

the complementary event, i.e., classify all types of “bad behavior” on a single block. We will dis-

tinguish three types of bad blocks: First, a block might have an “excited” bond, where the energy

condition is violated. Next, recalling thatB1 � 1, it is clear that if the spins themselves have
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only small deviations but not all spins are in the same ground-state region, then all of the spins

must be concentrated in the dividing regions on the circle, i.e., far away from the free energy min-

ima. Finally, we might have no energetic deviations but still not all spins in a single ground-state

region. This implies that the block is a miniature portrait of a stratified state. We anticipate that

these probabilities will go asB3(c1β J)B3/2e−β Jc11
2
, e−c2B3

ande−c3B2
, respectively, whereci

are numbers of order unity.

Assuming the above is (provably) correct, we must still tend to the question of the domain-wall

stiffness. As it turns out, a particular sort of estimate demonstrating a small probability of bad

events can also be translated into an estimate which establishes a substantial domain wall stiffness.

Indeed, we will bring into play various techniques based onreflection positivitywhich come under

the heading ofchessboard estimates[26, 27]. These go roughly as follows: To each (reflection-

symmetric) eventA which can take place in3B we may define the quantityzβ(A) which is the

partition function per site computed under the constraint thatA occurs in every translate of3B

(by integer multiples ofB). Then the thermal probability of observingA is bounded by

Pβ(A) ≤

(zβ(A)

zβ

)B3

(11)

wherezβ is the unconstrained partition function per site. Moreover, the probability of the simulta-

neous occurrence ofn ≥ 1 translates of the eventA is bounded by the right-hand side of Eq. (11)

raised to the n-th power.

Evidently, all that is needed to establish that the right-hand side of Eq. (11) is small enough

whenA is one of the bad events. For the homogeneous badness this is exactly the spin-wave

calculation discussed earlier. For a block with` layers of stratification it turns out, perhaps not

surprisingly, that the right-hand side of Eq. (11) decays likee−κ`B2
, for someκ > 0. Finally,

the energetic “disasters” can also be estimated along the lines of what was anticipated above for

this case. Thus, increasingβ and B (and adjusting1 so that the spin-wave approximation is

meaningful), we can estimate the total cost of a bad block by a number as small as we like. Hence,

the good blocks are prevalent and different types of good blocks, even if well separated, cannot

easily coexist within the same sample due to the suppression of domain walls. These are exactly

the ingredients needed for a Peierls argument and we may conclude that, at low temperatures, there

are (at least) six distinct infinite-volume states. At high temperatures the Gibbs state is unique so

at some point a phase transition has to occur.

The situation in the orbital-compass model is considerably more complicated due to the pro-
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fusion of additional ground states. Here, starting from a homogeneous ground state, the spins in

an entire plane can be continuously rotated about the axis perpendicular to that plane without any

disruption of the energetics. Thus, unlike in the 120◦-model, an elementary cube with one spin

fixed has acontinuumof distinct ground states. Notwithstanding, it has been established [28] that

even in this case orbital ordering occurs. However, the nature of the thermal states differs, in cer-

tain details, from that of the 120◦-model. E.g.,〈Sr 〉 vanishes at each site with the ordering being

something along the lines of a nematic type.

In conclusion, we have demonstrated that the classical 120◦-model exhibits long-range ordering

at sufficiently low temperatures. The key feature is that the degeneracy of the ground states is bro-

ken at positive temperature via a kind of “order-by-disorder” mechanism. A complete argument,

on a level of mathematical theorems, has already been constructed for the 120◦-model [29] and

similar (albeit less explicit) results hold for the orbital compass model [28]. All of this strongly in-

dicates that there is orbital ordering in the full-blown quantum/itenerant-electron versions of these

orbital models.
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