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Chen [1] builds the intrinsic link between the 1/f power spectra and the acoustic 

frequency power law dissipation and, accordingly, presents two explanations of the 

so-called infrared catastrophe of the 1/f power spectra. This note is an immediate 

follow-up. The major progress is to connect the 1/f power spectra and the power law 

dissipation of an acoustic signal of finite duration, and then, we factor out the 

augmented function in the 1/f power spectra, predicted by Mandelbrot [2]. The 

resolution of the infrared catastrophe puzzle is an easy byproduct of this research. 

In the appendix, we give a brief comment on the exponent of the 1/f power spectra 

of intermittent turbulence. 
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The 1/f power spectra (fluctuation) describes that the power spectral of a signal is 

inversely proportional to frequency f according to a 1/fβ power law. For the power of low 

frequency range, for instance, ( ) ∫∫ =
1
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colorfully called the infrared catastrophe. By modifying power spectra law of 1/fβ to 

( )fRf β− , where the augmented function R(f) is assumed to vary very slowly when f 

tends to zero, Mandelbrot [2, chapter 8] gives a reasonable explanation of this puzzling 

infrared catastrophe. However, R(f) is a coarse conjecture without an explicit expression 

and Mandelbrot’s explanation is more speculative, explorative, and phenomenological 

than theoretical. Below we try to give it an accurate and solid physical foundation 

through the acoustic dissipation analysis. 



 

The dissipation of acoustic wave propagation follows  
( )tfeII α−= 0 ,      (1) 

where I represents the power (energy, amplitude) of an acoustic signal. The attenuation 

coefficient α(f) is experimentally characterized by a frequency power law function 

( ) yff 0αα = ,  y∈ [0,2],  (2) 

where α0 and y are media-dependent parameters. For many media of interest, y is around 

1 for a broad range of frequency. The power spectra P of a dissipative acoustic signal of 

infinite duration is given by1 
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(3) shows that the frequency dissipative power law (2) leads to the 1/f power spectra (β=y, 
yfP 1∝ ). For a dissipative acoustic signal of finite duration, the power spectra is  
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where T is the signal duration. Comparing (4) with (3) and, meanwhile, considering 

Mandelbrot’s augmented function R(f), one easily has 
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 Irrespective of the value of y,  
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In terms of (6), ( )∫
1

0
dffPT  will not diverge when y≥1. Thus, we solve the infrared 

catastrophe puzzle. It is expected that most signals obeying 1/f power spectra in a broad 

range of social, economical, physical, chemical, and biological phenomena may hold the 

energy (not necessarily physical energy) attenuation (1) and the frequency power law (2), 



which lie on the solid underpinning of the corresponding fractional partial differential 

equation. The present puzzle resolution may thus hold in general.  

[2] points out that the prefactor of the 1/f power spectra has something to do with the 

signal duration T. The present analysis explicitly displays this dependency in (5).  

Mandelbrot [2] also analyzes the augmented function R(f) via the Wiener-Kinchin 

spectrum function. It will be very interesting to use the explicit expression (5) to pursue 

more results in this regard.   

Appendix:  

Mandelbrot [2] pointed out that intermittent turbulence dissipation may obey the 1/f 

power spectra having exponent β=5/3+c (c≥0). In terms of the relationship between the 

Levy stable distribution, frequency power law dissipation, and 1/f power spectra (see 

Chen [1]), we can conclude that 0≤y=β=5/3+c≤2, namely, the correction c≤1/3. This 

finding agrees well with Mandelbrot’s intuitive formula c=(3-D)/3, where the fractal 

dimension of the turbulence D>2 ([2], page 394). 

For the generalized diffusion-wave equation (7) in Chen [1], we guess the Hurst exponent 

H=µ/s holds under certain conditions. 
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